

PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA – CFI

INFORME FINAL NOVIEMBRE 2016

INSTITUTO DE INVESTIGACIÓN DE SERVICIOS PÚBLICOS E INFRAESTRUCTRA –UNC-

ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI **INFORME FINAL**

ÍNDICE GENERAL

INTRODUCCIÓN

1	II	NTROD	UCCIÓN	9
2	F	INALID	AD	9
3	E	STUDIO	OS PRELIMINARES DE CONECTIVIDAD ESTRATÉGICA	11
	3.1	RECOF	PILACIÓN DE ANTECEDENTES	11
	3	.1.1	Estudios de Tránsito - Volumen y Composición	11
	3	.1.2	Evaluación de Estado de la Red	18
	3	.1.3	Trabajos de Mantenimiento Realizados a la Red Vial	24
	3.2	Análi	SIS DE LA INFORMACIÓN	25
	3.3	INSPE	CCIÓN DE LA RED. ENSAYOS FÍSICOS	26
	3	.3.1	Evaluación de Estado - Inspección Propia	26
	3	.3.2	Resumen Evaluación de Estado	30
	3	.3.3	Ensayos Físicos – Calicatas	
	3	.3.4	Ensayos realizados	39
4	A	NÁLISI	S E INTERPRETACIÓN DE RESULTADOS	42
	4.1	IDENT	IFICACIÓN DE ASPECTOS RELEVANTES	42
	4.2	EVALU	JACIÓN DEL SISTEMA	42
	4	.2.1	Metodología de aplicación	43
	4	.2.2	Estimación de la Evolución del Tránsito. Tasas de Crecimiento	46
	4	.2.3	Determinación del Número de Ejes Equivalentes	51
	4.3	Análi	SIS DE LOS RESULTADOS DE ESTUDIOS DE SUELOS	65
	4.4	DETER	RMINACIÓN DE LA VIDA ÚTIL DE LOS TRAMOS	69
	4	.4.2	Número Estructural Efectivo	70
	4	.4.3	Determinación de la Vida Útil	72
	4	.4.4	Rehabilitación	73
5	C	ONCLU	ISION Y PRIORIZACIÓN DE LAS OBAS	80
6	В	BIBLIOG	RAFÍA	84
7	A	NEXO I	1	85
8	Α	NEXO I	II1	.03
9	Α	NEXO I	III1	47

ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI

10	ANE	(O IV	183
	10.1	RUTA PROVINCIAL №1	202
	10.2	Ruta Provincial №4	209
	10.3	Ruta Provincial №18	213
	10.4	Ruta Provincial №20	220
	10.5	Ruta Provincial №24	221
11	ANE	KO V	231
12	ANE	70. VI	227

ÍNDICE DE FIGURAS

FIGURA 1: LOCALIZACION DE TRAMOS EN ESTUDIO	T(
FIGURA 2: CARACTERIZACIÓN DEL TRÁNSITO	14
FIGURA 3: CARACTERIZACIÓN DEL TRÁNSITO	14
FIGURA 4: CARACTERIZACIÓN DEL TRÁNSITO	15
FIGURA 5: CARACTERIZACIÓN DEL TRÁNSITO	15
FIGURA 6: CARACTERIZACIÓN DEL TRÁNSITO	15
FIGURA 7: CARACTERIZACIÓN DEL TRÁNSITO	16
FIGURA 8: CARACTERIZACIÓN DEL TRÁNSITO	16
FIGURA 9: CARACTERIZACIÓN DEL TRÁNSITO	17
FIGURA 10: CARACTERIZACIÓN DEL TRÁNSITO	17
FIGURA 11: CARACTERIZACIÓN DEL TRÁNSITO	17
FIGURA 12: CARACTERIZACIÓN DEL TRÁNSITO	18
FIGURA 13: CARACTERIZACIÓN DEL TRÁNSITO	18
FIGURA 14: ÍNDICES DE ESTADO	21
FIGURA 15: ÍNDICES DE ESTADO	22
FIGURA 16: ÍNDICES DE ESTADO	22
FIGURA 17: ÍNDICES DE ESTADO	23
FIGURA 18: ÍNDICES DE ESTADO	24
FIGURA 19: DISTRIBUCIÓN DE LA RED VIAL SEGÚN SU ÍNDICE DE ESTADO	25
FIGURA 20: ESTADO SUPERFICIAL. RELEVAMIENTO PROPIO	26
FIGURA 21: ESTADO SUPERFICIAL. RELEVAMIENTO PROPIO	27
FIGURA 22: ESTADO SUPERFICIAL. RELEVAMIENTO PROPIO	27
FIGURA 23: ESTADO SUPERFICIAL. RELEVAMIENTO PROPIO	28
FIGURA 24: ESTADO SUPERFICIAL. RELEVAMIENTO PROPIO	29
FIGURA 25: ESTADO SUPERFICIAL. RELEVAMIENTO PROPIO	29
FIGURA 26: ESTADO SUPERFICIAL. RELEVAMIENTO PROPIO	30
FIGURA 27: UBICACIÓN DE LAS CALICATAS RUTA PROVINCIAL №1	33
FIGURA 28: UBICACIÓN DE LAS CALICATAS RUTA PROVINCIAL №4	34
FIGURA 29: UBICACIÓN DE LAS CALICATAS RUTA PROVINCIAL №10	35
FIGURA 30: UBICACIÓN DE LAS CALICATAS RUTA PROVINCIAL №18	36
FIGURA 31: UBICACIÓN DE LAS CALICATAS RUTA PROVINCIAL №20	
FIGURA 32: UBICACIÓN DE LAS CALICATAS RUTA PROVINCIAL №24	38
FIGURA 33: ENVOLVENTES DE GRANULOMETRÍAS	39
FIGURA 34: TIPOS DE SUELOS ENCONTRADOS EN CALICATAS	40
FIGURA 35: TIPOS DE SUELOS ENCONTRADOS EN CALICATAS	40
FIGURA 36: REPRESENTACIÓN DE LAS SERIES HISTÓRICAS DE TRÁNSITO	
FIGURA 37: GRANULOMETRÍA R1 1-A	185
FIGURA 38: GRANULOMETRÍA R1 1-B.	
FIGURA 39: GRANULOMETRÍA R1 3-A	186
FIGURA 40: GRANULOMETRÍA R1 3-B.	186
FIGURA 41: GRANULOMETRÍA R1 4-A	187
FIGURA 42: GRANULOMETRÍA R1 4-B.	187
FIGURA 43: GRANULOMETRÍA R4 2-A	188
FIGURA 44: GRANULOMETRÍA R4 2-B.	
FIGURA 45: GRANULOMETRÍA R4 3-A	189

ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI

FIGURA 46: GRANULOMETRÍA R4 3-B	189
Figura 47: Granulometría R4 4-A	190
FIGURA 48: GRANULOMETRÍA R4 4-B	190
Figura 49: Granulometría R4 5-A	191
FIGURA 50: GRANULOMETRÍA R4 5-B	191
FIGURA 51: GRANULOMETRÍA R4 6-A	192
FIGURA 52: GRANULOMETRÍA R4 6-B	192
FIGURA 53: GRANULOMETRÍA R4 7-A	193
FIGURA 54: GRANULOMETRÍA R4 7-B	193
FIGURA 55: GRANULOMETRÍA R18 1-A	194
FIGURA 56: GRANULOMETRÍA R18 1-B	194
FIGURA 57: GRANULOMETRÍA R18 2-A	195
FIGURA 58: GRANULOMETRÍA R18 2-B	195
FIGURA 59: GRANULOMETRÍA R18 3-A	196
FIGURA 60: GRANULOMETRÍA R18 3-B	196
FIGURA 61: GRANULOMETRÍA R18 4-A	197
FIGURA 62: GRANULOMETRÍA R18 4-B	197
FIGURA 63: GRANULOMETRÍA R18 5-A	198
FIGURA 64: GRANULOMETRÍA R18 5-B	198
FIGURA 65: GRANULOMETRÍA R24 1-A	199
Figura 66: Granulometría R24 2-A	199
FIGURA 67: GRANULOMETRÍA R24 1-B	200
FIGURA 68: GRANIII OMETRÍA R24 2-R	200

ÍNDICE DE TABLAS

Tabla 1: Clasificación vehicular	12
Tabla 2: Antecedentes de tránsito	13
Tabla 3: Informe de Índices de Estado	20
Tabla 4: Coordenadas de Calicatas	32
Tabla 5: Resumen de resultados de calicatas	33
Tabla 6: Resumen de resultados de calicatas	34
Tabla 7: Resumen de resultados de calicatas	35
Tabla 8: Resumen de resultados de calicatas	36
Tabla 9: Resumen de resultados de calicatas	37
Tabla 10: Resumen de resultados de calicatas	38
Tabla 11: Factores de Equivalencia por Eje (Dirección Nacional de Vialidad).	44
Tabla 12: Series históricas TMDA y PBI Argentina (preciso comstantes)	47
Tabla 13: Modelo de crecimiento anual absoluto del TMDA	49
Tabla 14: Modelos de tasas anuales acumulativas	50
Tabla 15: Modelos de tasas establecidas por elasticidad con el PBIarg	50
Tabla 16: TMDA Noviembre 2015. DPV La Pampa	51
Tabla 17:TMDA 2015	51
Tabla 18: Factor Ponderado de Pavimentos Flexibles.	52
Tabla 19: Resumen Ejes equivalentes.	52
Tabla 20: ejes equivalentes acumulados de RP N°1.	53
TABLA 21: TMDA NOVIEMBRE 2015. DPV LA PAMPA	53
Tabla 22:TMDA 2015	53
Tabla 23: Factor Ponderado de Pavimentos Flexibles.	54
Tabla 24: Resumen Ejes equivalentes.	54
Tabla 25: ejes equivalentes acumulados de RP N°4 Tramo Caleufu-RP №11.	55
TABLA 26: TMDA NOVIEMBRE 2015. DPV LA PAMPA	55
Tabla 27:TMDA 2015	55
Tabla 28: Factor Ponderado de Pavimentos Flexibles.	56
Tabla 29: Resumen Ejes equivalentes.	56
Tabla 30: ejes equivalentes acumulados de RP N°4 Tramo - RP №11 a Limite Pcia. San Luis	57
TABLA 31: TMDA NOVIEMBRE 2015. DPV LA PAMPA	57
TABLA 31: TMDA NOVIEMBRE 2015. DPV LA PAMPA	
	57
Tabla 32:TMDA 2015	57 58
TABLA 32:TMDA 2015 TABLA 33: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES	57 58 58
TABLA 32:TMDA 2015 TABLA 33: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES TABLA 34: RESUMEN EJES EQUIVALENTES	57 58 58 59
Tabla 32:TMDA 2015. Tabla 33: Factor Ponderado de Pavimentos Flexibles. Tabla 34: Resumen Ejes equivalentes. Tabla 35: ejes equivalentes acumulados de RP N°10 Tramo RP №1 a Colonia Barón.	57 58 58 59
Tabla 32:TMDA 2015	57 58 59 59
TABLA 32:TMDA 2015 TABLA 33: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES TABLA 34: RESUMEN EJES EQUIVALENTES TABLA 35: EJES EQUIVALENTES ACUMULADOS DE RP N°10 TRAMO RP №1 A COLONIA BARÓN TABLA 36: TMDA NOVIEMBRE 2015. DPV LA PAMPA TABLA 37:TMDA 2015	57 58 59 59 59
TABLA 32:TMDA 2015. TABLA 33: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES. TABLA 34: RESUMEN EJES EQUIVALENTES. TABLA 35: EJES EQUIVALENTES ACUMULADOS DE RP N°10 TRAMO RP №1 A COLONIA BARÓN. TABLA 36: TMDA NOVIEMBRE 2015. DPV LA PAMPA. TABLA 37:TMDA 2015. TABLA 38: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES.	57 58 59 59 59 60
TABLA 32:TMDA 2015	57585959596060
TABLA 32:TMDA 2015. TABLA 33: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES. TABLA 34: RESUMEN EJES EQUIVALENTES. TABLA 35: EJES EQUIVALENTES ACUMULADOS DE RP N°10 TRAMO RP Nº1 A COLONIA BARÓN. TABLA 36: TMDA NOVIEMBRE 2015. DPV LA PAMPA. TABLA 37:TMDA 2015. TABLA 38: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES. TABLA 39: RESUMEN EJES EQUIVALENTES. TABLA 40: EJES EQUIVALENTES ACUMULADOS DE RP N°18 TRAMO RP Nº1 A RN Nº35.	575859596061
TABLA 32:TMDA 2015	57585959606161
TABLA 32:TMDA 2015. TABLA 33: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES. TABLA 34: RESUMEN EJES EQUIVALENTES. TABLA 35: EJES EQUIVALENTES ACUMULADOS DE RP N°10 TRAMO RP Nº1 A COLONIA BARÓN. TABLA 36: TMDA NOVIEMBRE 2015. DPV LA PAMPA TABLA 37:TMDA 2015. TABLA 38: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES. TABLA 39: RESUMEN EJES EQUIVALENTES. TABLA 40: EJES EQUIVALENTES ACUMULADOS DE RP N°18 TRAMO RP Nº1 A RN Nº35. TABLA 41: TMDA NOVIEMBRE 2015. DPV LA PAMPA TABLA 42:TMDA 2015.	575859595960616161

TABLA 46: TMDA NOVIEMBRE 2015. DPV LA PAMPA	63
Tabla 47:TMDA 2015	63
TABLA 48: FACTOR PONDERADO DE PAVIMENTOS FLEXIBLES.	64
Tabla 49: Resumen Ejes equivalentes.	64
Tabla 50: ejes equivalentes acumulados de RP N°24 Tramo MERIDIANO V - Guatrache	65
TABLA 51: TIPOS DE SUELO RP N°1	65
TABLA 52: TIPOS DE SUELO RP N°4	66
TABLA 53: TIPOS DE SUELO RP N°10	66
TABLA 54: TIPOS DE SUELO RP N°18	67
TABLA 55: TIPOS DE SUELO RP N°20	68
TABLA 56: TIPOS DE SUELO RP N°24	68
TABLA 57: (RP N°1): ESTRUCTURA ADOPTADA EN LA MODELACIÓN.	69
Tabla 58: (RP N°4): Estructura adoptada en la modelación.	69
TABLA 59: (RP N°10): ESTRUCTURA ADOPTADA EN LA MODELACIÓN.	69
TABLA 60: (RP N°18): ESTRUCTURA ADOPTADA EN LA MODELACIÓN.	
TABLA 61: (RP N°20): ESTRUCTURA ADOPTADA EN LA MODELACIÓN.	
TABLA 62: (RP N°24): ESTRUCTURA ADOPTADA EN LA MODELACIÓN.	
TABLA 63: (RP N°1): VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS	
TABLA 64: (RP N°4): VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS	
TABLA 65: (RP N°18): VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS	
TABLA 66: (RP N°20): VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS	
TABLA 67: (RP N°24): VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS	
TABLA 68: NÚMERO ESTRUCTURAL ADOPTADO, POR RUTA Y POR TRAMO	
Tabla 69: (RP N°1): Vida Útil Estimada.	
Tabla 70: (RP N°4): Vida Útil Estimada.	
Tabla 71: (RP N°10): Vida Útil Estimada.	
TABLA 72: (RP N°18): VIDA ÚTIL ESTIMADA.	
TABLA 73: (RP N°20): VIDA ÚTIL ESTIMADA.	
TABLA 74: (RP N°24): VIDA ÚTIL ESTIMADA.	
TABLA 75: (RP N°1): REHABILITACIÓN PROPUESTA.	
. ,	
Tabla 76: (RP N°4): Rehabilitación propuesta.	
TABLA 77: (RP N°10): REHABILITACIÓN PROPUESTA.	
Tabla 78: (RP N°18): Rehabilitación propuesta.	
Tabla 79: (RP N°20): Rehabilitación propuesta.	
Tabla 80: (RP N°24): Rehabilitación propuesta.	
TABLA 81: (RP N°1): VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS	
Tabla 82: (RP N°1): Número Estructural adoptado.	
TABLA 83: (RP N°1): VIDA ÚTIL ESTIMADA.	
Tabla 84: (RP N°4): Valores sugeridos de coeficiente estructural (cm ⁻¹) para capas de pavimentos deteriorados	
Tabla 85: (RP N°4): Número Estructural adoptado.	
Tabla 86: (RP N°4): Vida Útil Estimada.	
TABLA 87: (RP N°10): VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS.	
Tabla 88: (RP N°10): Número Estructural adoptado.	
Tabla 89: (RP N°10): Vida Útil Estimada.	
TABLA 90: (RP N°18): VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS.	
TABLA 91: (RP N°18): NÚMERO ESTRUCTURAL ADOPTADO.	
Tabla 92: (RP N°18): Vida Útil Estimada.	
TABLA 93: VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS	78
Tabla 94: (RP N°20): Número Estructural adoptado.	78
Tabla 95: (RP N°20): Vida Útil Estimada.	78

TABLA 96: (RP N°24): VALORES SUGERIDOS DE COEFICIENTE ESTRUCTURAL (CM ⁻¹) PARA CAPAS DE PAVIMENTOS DETERIORADOS.	
TABLA 97: (RP N°24): NÚMERO ESTRUCTURAL ADOPTADO.	79
Tabla 98: (RP N°24): Vida Útil Estimada.	79
Tabla 99: Priorización de obras	80
Tabla 100: Rehabilitación propuesta. Ruta Provincial N° 18	81
Tabla 101: Rehabilitación propuesta. Ruta Provincial N° 20.	81
Tabla 102: Rehabilitación propuesta. Ruta Provincial N° 24.	82
Tabla 103: Rehabilitación propuesta. Ruta Provincial N° 1	82
Tabla 104: Rehabilitación propuesta. Ruta Provincial N° 4	83
Tabla 105: Rehabilitación propuesta. Ruta Provincial N° 10	83
Tabla 106: Rehabilitación propuesta. Ruta Provincial N° 4	84
TABLA 107: RESULTADOS DE ENSAYOS EN CALICATAS	.184
Tabla 108, Calicatas 1-A, 1-B, 3-A, 3-B, 4-A y 4-B.	.202
Tabla 109: Ensayo Proctor de Calicata 3-A.	.203
Tabla 110: Valores Soporte de diseño, Calicata 3-A	.204
Tabla 111: Moldes de VSR, Calicata 3-A.	.204
Tabla 112: presión-puntos de penetración de moldes, Calicata 3-A.	.205
Tabla 113: Ensayo Proctor, Calicata 4-A.	.206
Tabla 114: Valor Soporte Diseño de Calicata 4-A	.207
Tabla 115: Moldes de VSR, Calicata 4-A.	.207
Tabla 116: presión-puntos de penetración de moldes, Calicata 4-A.	.208
Tabla 117, Calicatas 2-A, 2-B, 3-A, 3-B, 4-A y 4-B.	.209
Tabla 118, Calicatas 5-A, 5-B, 6-A, 6-B, 7-A y 7-C.	.209
Tabla 119: Ensayo Proctor de Calicata 2-A.	.210
Tabla 120: Valores Soporte de diseño, Calicata 2-A	.211
Tabla 121: Moldes de VSR, Calicata 2-A.	.211
Tabla 122: presión-puntos de penetración de moldes, Calicata 2-A.	.212
Tabla 123, Calicatas 1-A, 1-B, 2-A, 2-B, 3-A y 3-B.	.213
Tabla 124, Calicatas 4-A, 4-B, 5-A y 5-B	.213
Tabla 125: Ensayo Proctor de Calicata 2-A.	.214
Tabla 126: Valores Soporte de diseño, Calicata 2-A	.215
Tabla 127: Moldes de VSR, Calicata 2-A.	.215
TABLA 128: PRESIÓN-PUNTOS DE PENETRACION DE MOLDES, CALICATA 2-A.	.216
Tabla 129: Ensayo Proctor de Calicata 5-A.	.217
Tabla 130: Valores Soporte de diseño, Calicata 5-A	.218
Tabla 131: Moldes de VSR, Calicata 5-A.	.218
Tabla 132: presión-puntos de penetración de moldes, Calicata 5-A.	.219
Tabla 133, Calicatas 1-A, 2-A, 3-A, 4-A, 5-A y 6-A.	.220
Tabla 134, Calicatas 1-B, 2-B, 3-B, 4-B, 5-B y 6-B	.220
Tabla 135, Calicatas 1-A, 1-B, 2-A y 2-B	.221
Tabla 136: Ensayo Proctor de Calicata 1-A.	.222
Tabla 137: Valores Soporte de diseño, Calicata 1-A	.223
Tabla 138: Moldes de VSR, Calicata 1-A.	.223
Tabla 139: presión-puntos de penetración de moldes, Calicata 1-A.	.224
Tabla 140: Ensayo Proctor de Calicata 2-A.	.225
Tabla 141: Valores Soporte de diseño, Calicata 2-A	.226
Tabla 142: Moldes de VSR, Calicata 1-A.	.226
Tabla 143: presión-puntos de penetración de moldes, Calicata 1-A.	.227
Tabla 144: Ensayo Proctor de Calicata 2-B.	.228
TARIA 145. VALORES SOPORTE DE DISEÑO. CALICATA 2-B	229

ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI

TABLA 146: MOLDES DE VSR, CALICATA 2-B	229
TABLA 147: PRESIÓN-PUNTOS DE PENETRACIÓN DE MOLDES	CALICATA 2-B230

1 INTRODUCCIÓN

La Provincia de La Pampa ha definido y fijado, dentro de su Política de Estado, como objetivo, el garantizar una adecuada movilidad de las personas y promover el desarrollo y expansión de las áreas productivas.

También es una realidad que, por diversas razones, como por ejemplo el incremento del transporte de cargas por vía terrestre, se ha provocado el deterioro de la red vial existente. Esto se traduce en altos costos para el transporte.

En vista de lo mencionado, es clara la necesidad de mantener un estado general BUENO de la red vial. De esta manera se continúa con la competitividad de sus productos, manteniendo estables los costos de transporte.

Asimismo, la Provincia de La Pampa está trabajando en programas específicos de mantenimiento de la red y es necesario disponer de herramientas que permitan asignar prioridades de inversión.

2 FINALIDAD

El Instituto de Investigaciones de Servicios Públicos e Infraestructura (IISPI) realiza el estudio de la Infraestructura para la conectividad de la Provincia de La Pampa, sirviendo además para ordenar e inventariar parte de la Red Provincial, según sus características existentes.

La finalidad es brindar un documento que permita establecer prioridades de inversión en los tramos de la red vial de la provincia de La Pampa que se indican más adelante. Para ello se determinará la vida útil o vida remanente de la red vial a estudiar, y establecer prioridades de inversión, para mantener la calidad en la conectividad de las distintas rutas componentes de la red vial provincial.

El objetivo del estudio es identificar la vida útil de la estructura y proponer acciones de mejora de mejor relación costo – beneficio para cada tramo analizado.

La mejora de la Red Vial colabora en la disminución de los tiempos de viaje, con beneficios a los usuarios y menores costos de mantenimiento de los vehículos. La correcta rehabilitación y mantención de la red vial, garantiza la conectividad, en la provincia, entre municipios y con otras regiones a nivel nacional.

Además favorece la economía regional, disminuyendo los costos de transporte, tanto de cargas como de personas. Así mismo, de manera relevante las rutas provinciales en buen estado traen importantes beneficios en seguridad vial, disminuyendo la accidentalidad y los costos asociados a ella.

Los tramos en estudio se describen en la figura siguiente:

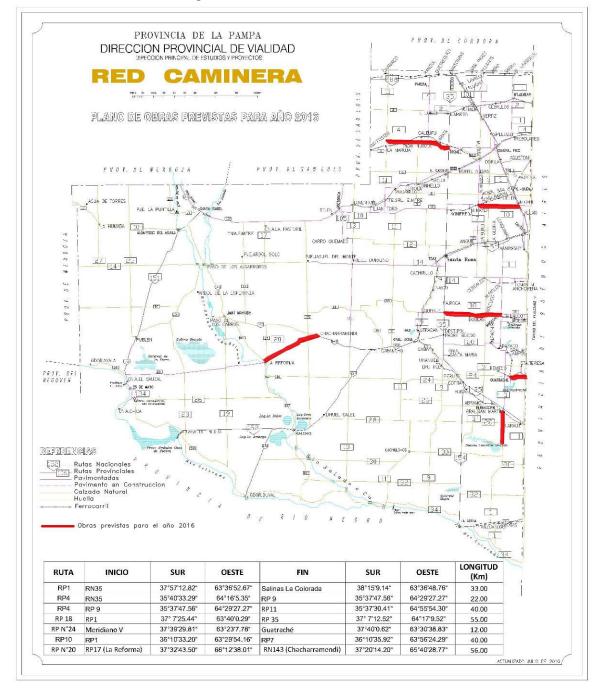


Figura 1: Localización de tramos en estudio

RP N°4. Tramo RP N° 9 - RP N°11

RP N°18. Tramo RP N°1 - RN N° 35

RP N°20. Tamo RP N°17 - RN N° 143

RP Nº 24. Tramo MERIDIANO V - Guatrache

RP N°10. Tramo RP N° 1 - RP N°7

RP Nº 1. Tramo RN Nº 35 - Salinas La Colorada

RP N° 4. Tramo RN N° 35 - RP N° 9

3 ESTUDIOS PRELIMINARES DE CONECTIVIDAD ESTRATÉGICA

3.1 Recopilación de Antecedentes

Se realizaron visitas a la Dirección Provincial de Vialidad, manteniendo reuniones con Ingenieros representantes de la misma. En las mismas se obtuvieron antecedentes de los tramos en análisis. Los mismos se describen en los apartados a continuación.

3.1.1 Estudios de Tránsito - Volumen y Composición

La Dirección Provincial de Vialidad posee datos de tránsito de toda su red vial. La información recabada corresponde a datos históricos del tránsito y de su composición desde el año 1995 a 2011, los mismos se muestran en Anexo I - Antecedentes.

La última campaña de tránsito fue realizada en el año 2015, discriminando el mismo en catorce categorías que responden a los tipos de vehículos que se muestran en la tabla siguiente.

Tabla 1: Clasificación vehicular

TABLA DE CLASIFICACION VEHICULAR

Número	Tipo		EJES	CLASE
1	Motocicleta	de	2	1
2	Auto	v = 00	2	2
3	Pickup	€ <u></u>	2	3
4	Bus 2ejes	50000	2	4
5	Camión 11	See	2	6
6	Pickup + rem.1e	~~ ~	3	3
7	Bus 3ejes		3	5
8	Camión 12		3	7
9	Semi 111		3	10
10	Pickup + rem.2e	6 ~ 0 00	4	3
11	Bus 4ejes	p =======	4	5
12	Camión 13		4	7
13	Camión 11-11		4	8
14	Semi 121		4	11
15	Serni 112		4	11
16	Camión 11-12	60000	5	9
17	Camión 12-11		5	9
18	Semi 11(1)2		5	12
19	Semi 122	CT 000	5	12
20	Semi 113	600	5	12
21	Semi 111 + Rem 11		5	8
22	Semi 12(1)2	CT 000	6	13
23	Camión 12-12		6	13
24	Semi 123	600	6	14

Los volúmenes más altos de tránsito corresponden a rutas de acceso a la localidad de General Pico en la Ruta Provincial Nº 1, superando los 2000 vehículos/día.

En relación al tránsito pesado se destacan las rutas provinciales Nº 1, en cercanías a General Pico, y Nº 20, en el acceso a la localidad de Chacharramendi, superando los 500 vehículos pesados por día.

De la información recibida, se han efectuado gráficos para cada ruta, donde se observa la distribución por tipo de vehículo del tránsito, y la evolución histórica del mismo.

Tabla 2: Antecedentes de tránsito

DUTA NO	TDAMO	FFOUA		VEH. LI	VIANOS	VEH. PE	SADOS
RUTA Nº	TRAMO	FECHA	TMDA	TMDA	%	TMDA	%
RP № 1	RN N° 35 - RP N° 14		0	0		0	
RP № 1	RP N° 18 - R9 N° 20		0	0		0	
RP № 1	RN N° 35 - RPN° 30		0	0		0	
RP Nº 1	RP Nº 14 - RP Nº 18		0	0		0	
RP Nº 1	RP Nº 2 - Gral. PICO		0	0		0	
RP Nº 1	Int. Alvear - RN Nº 188	15/04/2015	1071	785	73%	286	27%
RP Nº 1	Int. Alvear - RP N° 2	15/04/2015	1178	928	79%	250	21%
RP Nº 1	RP Nº 4 - Gral. Pico	22/04/2015	2379	1845	78%	534	22%
RP Nº 1	RP Nº 2 - RP Nº4	17/04/2015	1445	1134	78%	311	22%
RP Nº 1	RP Nº 102 - Agustoni	23/04/2015	2079	1732	83%	347	17%
RP Nº1	RP Nº 10 - Gral. Pico		0	0		0	
RP N° 1	RP Nº 10 - RN Nº 5	15/09/2015	1295	0	760/	0 309	240/
RP Nº 1	Agustoni - Quemu Quemu RP Nº 10 - Quemu Quemu	27/10/2015	1173	986 850	76% 72%	323	24% 28%
RP N° 1	RP N° 10 - RN N° 5	28/10/2015	838	519	62%	319	38%
RP Nº 1	RN N°5 - RP N°14	29/10/2015	525	298	57%	227	43%
RP N° 1	RP N° 14 - RP N° 18	04/11/2015	1105	836	76%	269	24%
RP Nº 1	RP N°18 - RP N° 20	04/11/2015	804	620	77%	184	23%
RP N°1	RP N°20 - RP N° 24	05/11/2015	735	526	72%	209	28%
RP Nº 1	RP N°24 - RN N° 35	05/11/2015	563	412	73%	151	27%
RP Nº 4	RP Nº 1 - Meridiano V	21/04/2015	912	684	75%	228	25%
RP Nº 4	Trenel - Gral. Pico	20/05/2015	1467	1298	88%	169	12%
RP Nº 4	Trenel - RN N° 35	21/05/2015	1317	1164	88%	153	12%
RP N°4	RP N°9 - RN N°35	21/00/2010	0	0	0070	0	1270
RP N° 4	RP Nº 9 - La Maruja		0	0		0	
RP Nº 4	RP Nº 1 - Meridiano V		0	0		0	
RP № 4	Arata - RN Nº 35	26/11/2015	1172	1048	89%	124	11%
RP Nº4	Arata - RP Nº 9	26/11/2015	932	827	89%	124	8%
RP №4	RP Nº9 - Caleufu	25/11/2015	492	421	86%	71	14%
RP № 4	Caleufu - RP Nº 11	22/11/2015	454	378	83%	76	17%
RP № 4	RP Nº 11- Limite San Luis	24/11/2015	196	165	84%	31	16%
RP № 10	RP N° 11 - RN N°35		0	0		0	
RP Nº10	Meridiano V- RP Nº 1	10/11/2015	109	98	90%	11	10%
RP N°10	RP Nº1- C. Baron	10/11/2015	283	224	79%	59	21%
RP N°10	C. Baron- RP Nº 10	11/11/2015	573	504	88%	69	12%
RP N°10	RP Nº7- RN Nº35	12/11/2015	368	299	81%	69	19%
RP Nº 10	Luan Toro - RP Nº105	03/12/2015	743	612	82%	131	18%
RP Nº 10	Luan Toro - RP Nº11	04/12/2015	743	612	82%	131	18%
RP Nº 10	RP Nº 11 - RN Nº35	02/12/2015	465	376	81%	89	19%
RP Nº 10	RP Nº 15 - Telen	09/06/2015	392	235	60%	157	40%
RP Nº 10	RP N°105 - Rio Salado	09/06/2015	386	239	62%	147	38%
RP Nº 10	Meridiano V - RP Nº 1		0	0		0	
RP Nº 10	RP Nº 1 - RP Nº 7		0	0		0	
RP Nº 10 RP Nº 10	RP N° 7 - RN N° 35 RN N° 151 - La Humada	11/06/2015	231	182	79%	49	21%
RP N° 10	RN N° 151 - La Humada RP N° 1 - RN N° 35	11/00/2015	0	0	19%	0	Z 1 7/0
RP Nº 18	Meridiano V - RP Nº 1		0	0		0	
RP Nº 18	RN N° 35- RP N° 9		0	0		0	
RP N° 20	RP N° 3 - RN N° 35		0	0		0	
RP N°20	RP N° 1 - RP N° 3		0	0		0	
RP N°18	Meridiano V - RP Nº 1		835	666	80%	169	20%
RP Nº 18	RP Nº 1 - RN Nº 35		802	562	70%	240	30%
RP Nº 18	RN N° 35 - RP N°9		544	488	90%	56	10%
RP N° 20	La Reforma - RN Nº151	03/06/2015	640	281	44%	359	56%
RP N° 20	Chacharramendi - RN Nº 151	20/07/2015	1766	1195	68%	571	32%
RP Nº 20	Chacharramendi - RN Nº 151	22/07/2015	1604	990	62%	614	38%
RP N°20	RP N° 15 - RP N° 17	03/06/2015	672	310	46%	362	54%
RP N° 24	Meridiano V - Guatrache		0	0		0	
RP № 24	Guatrache - RP Nº 1		0	0		0	
RP № 24	Meridiano V - Guatrache		655	548	84%	107	16%
RP № 24	Guatrache - RP Nº 1		878	734	84%	144	16%

3.1.1.1 Tránsito en Ruta Provincial Nº 1

Se destaca de la composición de vehículos pesados, los camiones con acoplado con un 12% sobre un total de 26%.

De la evolución histórica, se observa un pico en el año 1992, y una gran disminución del tránsito en el año 2002. La tendencia histórica es creciente, duplicándose el volumen de vehículos en casi 30 años. El TMDA del 2015 supera los 2000 vehículos por día.

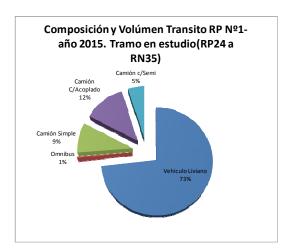


Figura 2: Caracterización del tránsito

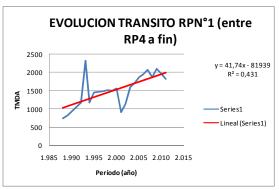


Figura 3: Caracterización del tránsito

3.1.1.2 Tránsito en Ruta Provincial Nº 4

Existe preponderancia de vehículos livianos, ya que los vehículos de carga solo participan en un 12% del tránsito. Esta situación se mantiene en las dos secciones consideradas, solo se incrementa un poco en la sección Caleufu - RP 11, a un 15%.

La evolución del tránsito muestra un crecimiento del 35% entre el inicio y fin de la serie (25 años), con alternancia de picos y valles.

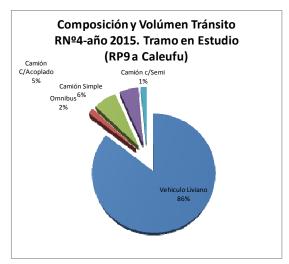


Figura 4: Caracterización del tránsito

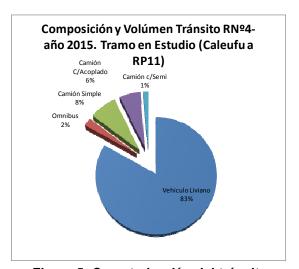


Figura 5: Caracterización del tránsito

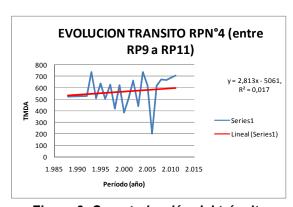


Figura 6: Caracterización del tránsito

Instituto de Investigación de Servcios Públicos e Infraestructura

3.1.1.3 Tránsito en Ruta Provincial Nº 10

La participación de los vehículos pesados es de 21%, con preponderancia de los camiones con acoplado del tipo cerealeros, con un 12% del total. Se observa muy baja la existencia de ómnibus en el tramo.

En éste tramo no se dispone de evolución histórica del TMDA.

Figura 7: Caracterización del tránsito

3.1.1.4 Tránsito en Ruta Provincial Nº 18

La participación de los vehículos pesados es del 27%, donde prevalecen los camiones con semi remolque.

Desde el año 1990 al 2015, la evolución del tránsito ha sufrido de picos y valles, no obstante, el volumen se ha mantenido casi invariable en el tiempo, si consideramos una media. Considerando el inicio y fin de la serie, el tránsito ha crecido en el orden del 50% en período considerado.

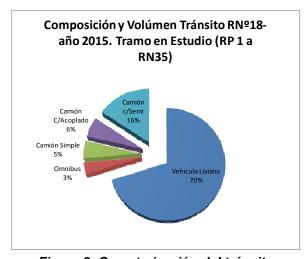


Figura 8: Caracterización del tránsito

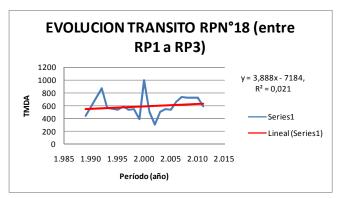


Figura 9: Caracterización del tránsito

3.1.1.5 Tránsito en Ruta Provincial Nº 20

Se observa en ésta ruta participaciones iguales entre vehículos livianos y pesados, ya que estos últimos poseen el 50% del tránsito total; y donde se destacan los camiones semi remolque con un 38%.

La evolución histórica ha sufrido de muchos picos y caídas, pero en general en los 25 años considerados, se observa un crecimiento superior al 100%.

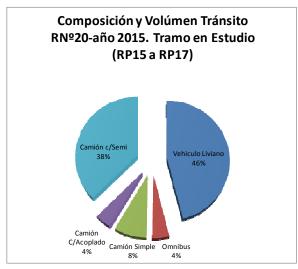


Figura 10: Caracterización del tránsito

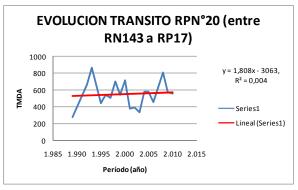


Figura 11: Caracterización del tránsito

3.1.1.6 Tránsito en Ruta Provincial Nº 24

A diferencia del resto de los tramos en análisis, la participación de los vehículos pesados en del 15%, muy inferior a los demás; prevaleciendo los camiones simples y con acoplado.

La evolución presenta picos muy marcados en correspondencia de los años 1992 y 2010, superándose los 1000 vehículos por día, el resto del período el TMDA oscila entre los 400 a 600 vehículos - día. Entre el inicio y fin de la serie considerada el volumen de vehículos experimentó un crecimiento del 25%.

Figura 12: Caracterización del tránsito

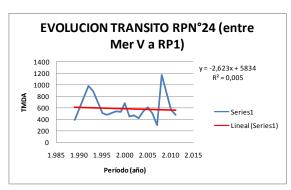


Figura 13: Caracterización del tránsito

3.1.2 Evaluación de Estado de la Red

En el año 2015, la DPV La Pampa realizó una campaña de Evaluación de Estado de Calzada, siguiendo los lineamientos de la Dirección Nacional de Vialidad, determinando el Índice de Estado de la calzada en función de cuatro variables: D1: Rugosidad, D2: Ahuellamiento, D3: Fisuras, D4: Baches y Desprendimientos.

El Índice de Estado se define por el algoritmo:

$$IE = 10 \ x e^{-\sum a_i \times D_i}$$

Dónde:

IE = Índice de Estado

e = 2,718, base de los logaritmos neperianos

a i = Coeficiente de peso que depende del tipo de capa de rodamiento del pavimento, según sea flexible, con capa de rodamiento de concreto asfáltico; flexible, con capa de rodamiento de tratamiento bituminoso superficial; o rígido. Adoptan valores comprendidos entre 0,04 y 0,08.

D i = Coeficiente que valoriza el grado de falla, adoptan valores comprendidos entre 0 y 10, correspondiendo los mayores valores a las situaciones más desfavorables.

El Índice de Estado queda definido en un intervalo de 1 a 10, siendo 1 el peor estado y 10 excelente.

Dentro de éste rango se establece que para valores de Índice de estado entre 10 y 7, el estado de la calzada es Bueno, entre 7 y 5 el estado es Regular, y para valores inferiores a 5 el estado de la calzada es Malo, y se estaría ante el caso de un pavimento sumamente fallado que requiere atención de forma urgente. Esto puede observarse en la planilla adjunta, destacándose con colores verde, azul y rojo respectivamente.

Como puede observarse en la planilla adjunta, la rugosidad no fue medida, ya que la DPV no dispone del equipamiento (Rugosímetro) necesario.

A continuación se analiza la evaluación de estado para cada sección en estudio.

Tabla 3: Informe de Índices de Estado

Direction Provincial De Vialidad Planeamiento e inf vial **Evaluacion De Estado 2015**

INFORME INDICE ESTADO

				RME INDICE EST	ADO					
RUTA	INICIO	FIN	DESCIN	DESFIN	D1 D2 D3 D4	I.E	LONG	В	R	М
P001	0	20	RN188	KM 20	0 6 8 1	3,95	20			20
P001	20	25,7	KM 20	RP2	0 6 6 1	4,68	5,7			5,7
P001	25,7	55,71	RP2	RP4	0 3 6 1	5,27	30,01		30,01	
P001	55,71	71,5	RP4	KM71.5	0 4 8 3	3,79	15,79			15,79
P001	71,5	81,96	KM 71.5	RP102	0 4 9 2	4,03	10,46			10,46
P001	81,96	144	RP102	RP10	0 1 4 0	7,19	62,04	62,04		
P001	144,53	172,82	RP10	RN5	0 1 1 0	8,87	28,29	28,29		
P001	195	230,15	RN5	RP14	0 4 8 7	3,53	35,15			35,15
P001	230,15	264,97	RP14	RP18	0 4 0 0	8,19	34,82	34,82		
P001	268,13	277,03	MACACHÍN	KM277	0 1 3 0	7,71	8,9	8,9		
P001	277,03	292,08	KM 277	RP20	0 1 0 0	9,51	15,05	15,05		
P001	292,08	329,43	RP20	RP24	0 1 0 0	9,51	37,35	37,35		
P001	329,43	340,74	RP24	KM340	0 3 8 6	3,23	11,31			11,31
P001	340,74	361,1	KM340	RN35	0 5 6 6	3,36	20,36			20,36
P001	361,1	394,44	RN35	SAL.COL.	0 3 8 6	3,87	33,34			33,34
P004	0	20	MER V	RP1	0 2 6 0	5,95	20		20	
P004	47,81	91,94	RP101	RN35	0 0 0 0	10,00	44,13	44,13		
P004	91,94	113,64	RN35	RP9	0 3 8 6	3,87	21,7			21,7
P004	113,64	153,89	RP9	RP11	0 3 8 4	4,19	40,25			40,25
P004	163,81	179,37	RP11	LTE.S.LUIS	0 1 5 1	6,44	15,56		15,56	
P010	0	10,17	MER V	RP1	0 2 8 4	4,40	10,17			10,17
P010	10,17	40,59	RP1	RP3	0 4 8 3	4,15	30,42			30,42
P010	40,59	81,05	RP3	RN35	0 3 9 4	3,91	40,46			40,46
P010	86,49	124,34	RN35	KM124	0 0 5 0	7,05	37,85	37,85		
P010	124,34	157,83	KM124	KM157.5	0 1 2 0	8,27	33,49	33,49		
P010	157,83	197,95	KM157.5	KM197.59	0 2 8 3	4,58	40,12			40,12
P010	197,95	237,4	TELÉN	KM237.06	0 3 3 4	5,95	39,45		39,45	
P010	237,4	267,92	KM237.06	RP17	0 3 7 3	4,68	30,52			30,52
P010	267,92	278,34	RP17	PROG.278	0 3 6 4	4,82	10,42			10,42
P010	278,34	288,04	PROG.278	E.MITRE	0 3 5 4	5,17	9,7		9,7	
P010	288,04	318,43	E.MITRE	RN143	0 2 4 4	5,83	30,39		30,39	
P018	0	25,13	MER V	RP1	0 1 8 3	4,82	25,13			25,13
P018	25,13	40,17	RP1	RP3	0 4 9 5	3,57	15,04			15,04
P018	40,17	80,69	RP3	RN35	0 3 7 2	4,87	40,52			40,52
P018	80,69	100,75	RN35	QUEHUÉ	0 4 7 1	4,82	20,06			20,06
P018	100,75	105,86	QUEHUÉ	RP9	0 4 6 0	5,38	5,11		5,11	
P020	0	9,14	RP1	ALPACHIRI	0 1 0 0	9,51	9,14	9,14		
P020	9,14	15,08	ALPACHIRI	RP3	0 2 0 7	6,84	5,94		5,94	
P020	18,08	58,65	RP3	RN35	0 4 2 6	5,60	40,57		40,57	
P020	194,36	246,87	RN143	RP17	0 3 7 2	4,87	52,51			52,51
P020	246,87	303,61	RP17	KM303.61	0 3 7 1	5,07	56,74		56,74	
P020	303,61	342,21	KM 303.61	KM 342.21	0 3 7 0	5,27	38,6		38,6	
P020	342,21	384,15	KM341.59	RN151	0 3 7 1	5,07	41,94		41,94	
P024	0	18,06	MER V	GUATRACHÉ	2 4 9 4	3,47	18,06			18,06
P024	18,06	23,6	GUATRACHE	RP1	1 1 0 0	9,26	5,54	5,54		

3.1.2.1 Ruta Provincial Nº 1

El tramo en estudio de la ruta provincial Nº 1, corresponde al Tramo RN Nº35-Salinas La Colorada (Prog 360 a 395). Esta sección se caracteriza por un Índice de Estado menor que cuatro, el ahuellamiento (D2 = 3) corresponde a una deformación entre 13 a 16 mm; las fisuras (D3 = 8) corresponde a fisuras generalizadas en forma de malla cerrada, de reticulado más chico, formando la llamada piel de cocodrilo; y

los baches (D4 = 6) se corresponde a baches descubierto en el orden de 0,70 a 1,00% y baches cubiertos entre 2,10 a 2,40%.

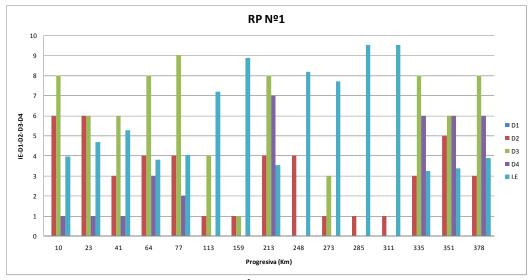


Figura 14: Índices de estado

3.1.2.2 Ruta Provincial Nº 4

El tramo en estudio de la ruta provincial N° 4, corresponde al Tramo RN N° 35 - RP N° 9, y Tramo RP N° 9 - RP N° 11 (Prog 91 - 114 y 114 - 154). Esta sección se caracteriza por un Índice de Estado menor que cuatro, el ahuellamiento (D2 = 3) corresponde a una deformación entre 13 a 16 mm; las fisuras (D3 = 8) corresponde a fisuras generalizadas en forma de malla cerrada, de reticulado más chico, formando la llamada piel de cocodrilo; y los baches (D4 = 6) se corresponde a baches descubierto en el orden de 0,70 a 1,00% y baches cubiertos entre 2,10 a 2,40%.

La sección entre progresivas 114 a 154, posee iguales características a la anterior con la salvedad que los baches (D4 = 4) poseen menor cantidad, con descubiertos en el orden de 0,10 a 0,30% y baches cubiertos entre 1,30 a 1,60%.

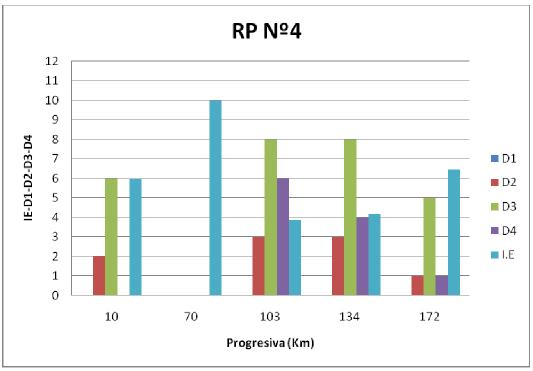


Figura 15: Índices de estado

3.1.2.3 Ruta Provincial Nº 10

El tramo en estudio de la ruta provincial N° 10, corresponde al tramo entre la RP N° 1 y RP N° 7 (Prog 10 - 50). Esta sección se caracteriza por un Índice de Estado apenas superior a cuatro, el ahuellamiento (D2 = 4) corresponde a una deformación entre 17 a 20 mm; las fisuras (D3 = 8) corresponde a fisuras generalizadas en forma de malla cerrada, de reticulado más chico, formando la llamada piel de cocodrilo; y los baches (D4 = 3) se corresponde a baches descubierto en el orden de 0,07 a 0,09% y baches cubiertos entre 0,90 a 1,20%.

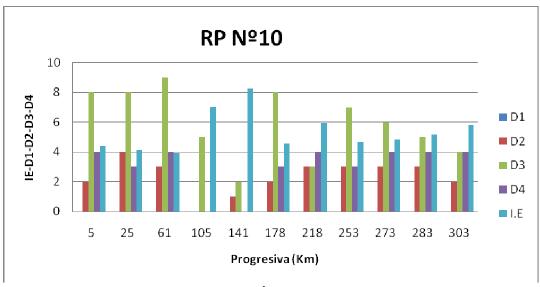


Figura 16: Índices de estado

Instituto de Investigación de Servcios Públicos

3.1.2.4 Ruta Provincial Nº 18

El tramo en estudio de la ruta provincial N° 18, corresponde al Tramo RP N° 1 - RN N° 35 (Prog 0 - 55). Esta sección se caracteriza por un Índice de Estado es de 3,50, el ahuellamiento (D2 = 4) corresponde a una deformación entre 17 a 20 mm; las fisuras (D3 = 9) corresponde a fisuras generalizadas en forma de malla cerrada, de reticulado más chico, formando la llamada piel de cocodrilo; y los baches (D4 = 5) se corresponde a baches descubierto en el orden de 0,40 a 0,60% y baches cubiertos entre 1,70 a 2,00%.

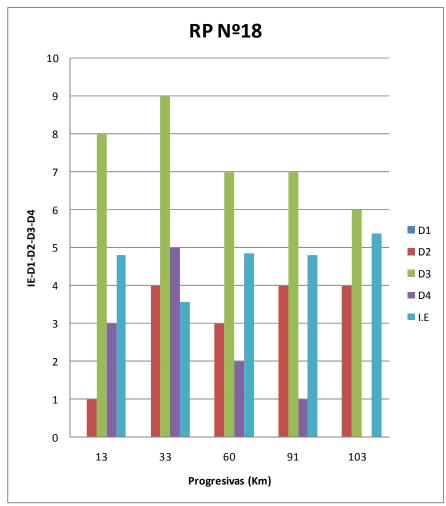


Figura 17: Índices de estado

3.1.2.5 Ruta Provincial Nº 20

La ruta provincial N° 20, le corresponde al Tramo RP N° 17 - RN N°143 (Prog 195 - 247). Esta sección se caracteriza por un Índice de Estado apenas inferior a 5,00, el ahuellamiento (D2 = 3) corresponde a una deformación entre 13 a 16 mm; las fisuras (D3 = 7) corresponde a fisuras generalizadas en forma de malla cerrada, de reticulado más chico, formando la llamada piel de cocodrilo; y los baches (D4 = 2) se corresponde a baches descubierto en el orden de 0,04 a 0,06% y baches cubiertos entre 0,50 a 0,80%.

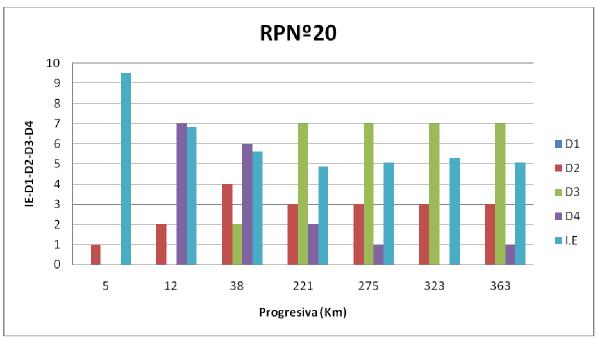


Figura 18: Índices de estado

3.1.2.6 Ruta Provincial Nº 24

La Ruta Provincial N° 24, le corresponde al Tramo MERIDIANO V - Guatraché (Prog 0 - 12). Esta sección se caracteriza por un Índice de Estado apenas de 3,50, el ahuellamiento (D2 = 4) corresponde a una deformación entre 17 a 20 mm; las fisuras (D3 = 9) corresponde a fisuras generalizadas en forma de malla cerrada, de reticulado más chico, formando la llamada piel de cocodrilo; y los baches (D4 = 4) se corresponde a baches descubierto en el orden de 0,10 a 0,30% y baches cubiertos entre 1,30 a 1,60%.

3.1.3 Trabajos de Mantenimiento Realizados a la Red Vial

En los tramos en estudio, solo se han efectuado tareas de mantenimiento mínimo, como bacheos, no teniendo la DPV antecedentes de tareas efectuadas en los cinco años pasados.

De la recorrida de los tramos, se confirmó esta situación, encontrando solo tareas efectuadas de bacheos, y en algunos casos se ha borrado la demarcación horizontal de la calzada, lo que refleja el tiempo transcurrido desde la última intervención.

Por otra parte de la consulta con los profesionales de la DPV, nos comentaron que las estructuras típicas que emplean en sus rutas, constan de una base de tosca y una carpeta asfáltica tipo tratamiento o lechada; y las rehabilitaciones que suelen efectuar consisten en lechada, la cual consta de una carpeta asfáltica de bajos espesor, inferior a los 2 cm.

3.2 Análisis de la información

La información ha sido descripta y a la vez analizada en los apartados anteriores. A modo de resumen valga decir:

- El tránsito muestra valores medios a bajos. Los más altos corresponden a 2379 veh/día (RP Nº1, entre RP Nº4 y General Pico) y los más bajos relevados a 109 veh/día (RP Nº10, entre Meridiano V y RP Nº1).
- Los valores presentan una gran variabilidad, característica de tramos con tránsito bajo. En algunos casos se notan picos y valles pronunciados.
- Nuevamente la evolución ha sido variada desde crecimientos pronunciados a bajos.
- En general los vehículos livianos son preponderantes excepto en los tramos de la RP N°20 en la que tiene el 46% de la participación (en contrario al 70 u 80% de otros tramos)
- Respecto de la evaluación de estado se realiza a través del "Índice de Estado" propuesto por la Dirección Nacional de Vialidad. En los tramos analizados, se caracterizaron como "bueno", 316,6 km, como "regular" 334,01 km; y como "malo" 538,49 km. Esto se corresponde con el 26,63%; 28,09%; 45,29% respectivamente.

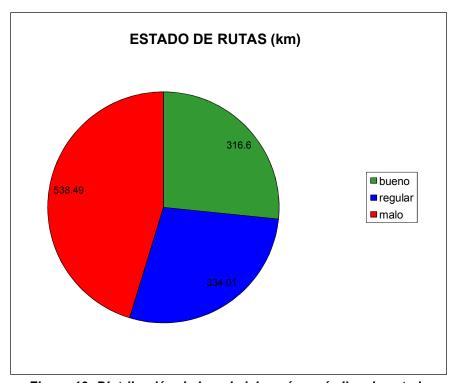


Figura 19: Distribución de la red vial según su índice de estado

3.3 Inspección de la Red. Ensayos Físicos

3.3.1 Evaluación de Estado - Inspección Propia

La verificación de la evaluación de estado se efectuó, mediante una inspección visual de cada tramo, programando paradas cada 2 km, evitando de esta manera las subjetividades.

En cada punto de parada se evaluó visualmente el ahuellamiento, la fisuración y los baches, registrando mediante fotografías y ubicación con coordenadas los detalles relevantes.

Como síntesis puede mencionarse para cada ruta:

3.3.1.1 Ruta Provincial Nº 1- Tramo: RN Nº35-Salinas La Colorada

El Tramo, presenta en general, ahuellamiento superior a 15 mm, fisuración tipo 8 con desprendimiento de material en huella, se observa desprendimientos de carpeta en los bordes de la calzada; y desde el punto de vista de la seguridad vial, el tramo de ruta carece de demarcación horizontal.

La evaluación visual coincide con la Evaluación de Estado realizada por la DPV La Pampa.

A modo de ejemplo se muestra la Progresiva 388, la que presenta ahuellamiento entre 15 a 20 mm, y fisuras tipo 8 en huella; fallas que pueden observarse en las fotografías adjuntas.

Figura 20: Estado superficial. Relevamiento propio

En el Anexo II, Verificación de Evaluación de Estado, se muestra el relevamiento efectuado.

3.3.1.2 Ruta Provincial N° 4 - Tramo: RN N°35 - RP N°9

El Tramo, presenta en general, Ahuellamiento superior a 15 mm, fisuración tipo 10, piel de cocodrilo con desprendimiento de material en huella. El tramo posee baches cubiertos y descubiertos.

La evaluación visual coincide con la Evaluación de Estado realizada por la DPV La Pampa.

A modo de ejemplo se muestra la Progresiva 107, la que presenta ahuellamiento del orden de 15 mm, y fisuras tipo 10 en huella, posee baches cubiertos y abiertos; fallas que pueden observarse en las fotografías adjuntas. (Coordenadas: X=3620284.6622, Y=6056818.7071).

Figura 21: Estado superficial. Relevamiento propio

En el Anexo II, Verificación de Evaluación de Estado, se muestra el relevamiento efectuado.

3.3.1.3 Ruta Provincial Nº 4 - Tramo: RP Nº9 - RP Nº11

El tramo presenta en general iguales características al tramo anterior, con Ahuellamiento superior a 15 mm, fisuración tipo 10, piel de cocodrilo con desprendimiento de material en huella, baches cubiertos y descubiertos.

La evaluación visual coincide con la Evaluación de Estado realizada por la DPV La Pampa.

A modo de ejemplo se muestra la Progresiva 136, la que presenta ahuellamiento del orden de 15 mm, y fisuras tipo 10 reflejas de capas inferiores, posee baches cubiertos y abiertos; fallas que pueden observarse en las fotografías adjuntas. (Coordenadas: 35°37'37.90"S, 64°44'5.00"O).

Figura 22: Estado superficial. Relevamiento propio

En el Anexo II, Verificación de Evaluación de Estado, se muestra el relevamiento efectuado.

3.3.1.4 Ruta Provincial Nº 10 - Tramo: RP Nº1 - RP Nº7

El tramo en general posee Ahuellamiento del orden de 20 mm, fisuración tipo 10, piel de cocodrilo con desprendimiento de material en huella, baches cubiertos y descubiertos. Se observa desprendimientos de carpeta en los bordes de la calzada; y desde el punto de vista de la seguridad vial, el tramo de ruta carece de demarcación horizontal.

La evaluación visual coincide con la Evaluación de Estado realizada por la DPV La Pampa.

A modo de ejemplo se muestra la Progresiva 6, la que presenta ahuellamiento del orden de 20 mm, y fisuras tipo 10, baches cubiertos del orden de los 5 m2. Las fallas que pueden observarse en las fotografías adjuntas. (Coordenadas: 36°10'33.70"S, 63°33'49.10"O).

Figura 23: Estado superficial. Relevamiento propio

En el Anexo II, Verificación de Evaluación de Estado, se muestra el relevamiento efectuado.

3.3.1.5 Ruta Provincial Nº 18 - Tramo: RP Nº1 - RN º35

El tramo en general posee Ahuellamiento del orden de 15 a 20 mm, fisuración tipo 8 - 10, piel de cocodrilo con desprendimiento de material en huella, baches cubiertos y descubiertos.

La evaluación visual coincide con la Evaluación de Estado realizada por la DPV La Pampa.

A modo de ejemplo se muestra la Progresiva 53, la que presenta ahuellamiento del orden de 20 a 25 mm, y fisuras tipo 10, demarcación horizontal deficiente. Las fallas que pueden observarse en las fotografías adjuntas. (Coordenadas: 37° 7'26.30"S, 63°41'28.40"O)

Figura 24: Estado superficial. Relevamiento propio

En el Anexo II, Verificación de Evaluación de Estado, se muestra el relevamiento efectuado.

3.3.1.6 Ruta Provincial N° 20 - Tramo: RP N°17 - RN N°143

El tramo en general posee Ahuellamiento del orden de 15 mm, fisuración tipo 8 - 10, piel de cocodrilo con desprendimiento de material en huella, baches cubiertos y descubiertos.

La evaluación visual coincide con la Evaluación de Estado realizada por la DPV La Pampa.

A modo de ejemplo se muestra la Progresiva 203, la que presenta ahuellamiento del orden de 10 mm, y fisuras tipo 10 generalizadas, bacheo necesario del orden de 3 m2. Las fallas que pueden observarse en las fotografías adjuntas. (Coordenadas: 37°21'40.70"S, 65°45'4.10"O).

Figura 25: Estado superficial. Relevamiento propio

En el Anexo II, Verificación de Evaluación de Estado, se muestra el relevamiento efectuado.

3.3.1.7 Ruta Provincial Nº 24 - MERIDIANO V - Guatraché

El tramo en general posee Ahuellamiento del orden de 10 a 15 mm, fisuración tipo 8 - 10, piel de cocodrilo reflejas de capas inferiores.

La evaluación visual no es coincidente con la Evaluación de Estado realizada por la DPV La Pampa, ya que no se observan baches y el ahuellamiento observado es considerablemente menor.

A modo de ejemplo se muestra la Progresiva 10, la que presenta ahuellamiento del orden de 10 mm, y fisuras tipo 8 generalizadas. Las fallas que pueden observarse en las fotografías adjuntas. (Coordenadas: 37°39'21.90"S, 63°29'52.90"O).

Figura 26: Estado superficial. Relevamiento propio

En el Anexo II, Verificación de Evaluación de Estado, se muestra el relevamiento efectuado.

3.3.2 Resumen Evaluación de Estado

Ruta Provincial N°1 - Tramo RN N° 35 a Salinas La Colorada:

El tramo presenta en general, Ahuellamiento superior a 15 mm, fisuración tipo 8 con desprendimiento de material en huella, se observa desprendimientos de carpeta en los bordes de la calzada; y desde el punto de vista de la seguridad vial, el tramo de ruta carece de demarcación horizontal.

Ruta Provincial N°4 - Tramo RN N° 35 a RP N°9:

El tramo presenta en general, Ahuellamiento superior a 15 mm, fisuración tipo 10, piel de cocodrilo con desprendimiento de material en huella. El tramo posee baches cubiertos y descubiertos.

Ruta Provincial N°4 - Tramo RP N° 9 a RP N°11:

El tramo presenta en general iguales características al tramo anterior, con Ahuellamiento superior a 15 mm, fisuración tipo 10, piel de cocodrilo con desprendimiento de material en huella, baches cubiertos y descubiertos.

Ruta Provincial N°10 - Tramo RP N° 1 a RP N°7:

El tramo en general posee Ahuellamiento del orden de 20 mm, fisuración tipo 10, piel de cocodrilo con desprendimiento de material en huella, baches cubiertos y descubiertos. Se observa desprendimientos de carpeta en los bordes de la calzada;

y desde el punto de vista de la seguridad vial, el tramo de ruta carece de demarcación horizontal.

Ruta Provincial N°18 - Tramo RP N° 1 a RP N°35:

El tramo en general posee Ahuellamiento del orden de 15 a 20 mm, fisuración tipo 8 - 10, piel de cocodrilo con desprendimiento de material en huella, baches cubiertos y descubiertos.

Ruta Provincial N°20 - Tramo RP N°17 (La Reforma) a RN N°143 (Chacharramendi):

El tramo en general posee Ahuellamiento del orden de 15 mm, fisuración tipo 8-10, piel de cocodrilo con desprendimiento de material en huella, baches cubiertos y descubiertos.

Ruta Provincial N°24 - Tramo Meridiano V y Guatrache:

El tramo en general posee Ahuellamiento del orden de 10 a 15 mm, fisuración tipo 8 - 10, piel de cocodrilo reflejas de capas inferiores.

3.3.3 Ensayos Físicos - Calicatas

Para la ejecución del presente estudio se realizó una serie de trabajos que pueden agruparse según se indica a continuación:

- a) Campaña de Exploración Geotécnica In-Situ. Consistió en la realización de 29 calicatas a cielo abierto para el relevamiento de los distintos estratos que conforman el paquete estructural de pavimento. Además se ejecutaron 24 ensayos para la determinación del peso específico mediante el Cono de Arena ASTM 1556.
- b) Estudios de Laboratorio. Para la determinación del peso específico seco se determinó el contenido de humedad (ASTM D 2974 e IRAM 10519/70).

El desarrollo y los resultados obtenidos en cada una de las tareas listadas anteriormente se presentan en los párrafos sucesivos del presente informe y en el Anexo III adjuntos al mismo. En el Anexo IV se muestran los resultados de los ensayos realizados a los materiales extraídos de las calicatas.

En la Tabla 4 se presenta las coordenadas de las calicatas ejecutadas.

Tabla 4: Coordenadas de Calicatas

Ruta	Designación	Coordenada	Observaciones	
rata	Calicata	Latitud	Longitud	0000140001100
	C1 – 1	38° 00' 52,2"	63° 36' 49,3"	
RP №1	C1 – 2	38° 05' 13,5"	63° 36' 48,3"	
	C1 – 3	38° 09' 34,7"	63° 36' 47,6"	
	C1 – 4	38° 13' 55,7"	63° 36' 48,2"	
	C4 – 1	35° 37' 31,48"	64° 54' 12,38"	No se realizó
RP №4	. .	00 01 01,10	0.01.12,00	ensayo pesos
				específico in-situ.
	C4 – 2	35° 37' 37,1"	64° 47' 51,8"	
	C4 – 3	35° 37' 42,8"	64° 41' 43,1"	
	C4 – 4	35° 37' 46,1"	64° 35' 23,8"	
	C4 – 5	35° 37' 47,7"	64° 29' 05,6"	
	C4 – 6	35° 38' 17,0"	64° 22' 56,4"	
	C4 – 7	35° 40' 35,6"	64° 17' 27,4"	
	C10 – 1	36° 10' 37,2"	63° 51' 55,7"	
RP Nº10	C10 – 2	36° 10' 33,5"	63° 46' 11,3"	No se realizó
				ensayo pesos
				específico in-situ.
	C10 – 3	36° 10' 33,6"	63° 40' 08,9"	
	C10 – 4	35° 10' 34,0"	63° 34' 05,8"	
	C18 – 1	37° 07' 14,9"	64° 13' 40,5"	
RP Nº18	C18 – 2	37° 07' 16,7"	64° 07' 33,4"	
	C18 – 3	37° 07' 18,8"	64° 01' 28,3"	No se realizó
				ensayo pesos
	C18 – 4	270 07! 40 0"	640 041 20 2"	específico in-situ.
		37° 07' 18,8"	64° 01' 28,3"	No so rosli-4
	C18 – 5	37° 07' 18,7"	63° 49' 28,4"	No se realizó ensayo pesos
				específico in-situ.
	C18 – 6	37° 07' 26,4"	63° 43' 17,3"	No se realizó
	0.0	0. 0. 20,.		ensayo pesos
				específico in-situ.
	C20 – 1	37° 31' 44,4"	66° 09' 50,2"	
RP N°20	C20 – 2	37° 29' 46,3"	66° 04' 35,5"	
	C20 – 3	37° 27' 39,5"	66° 59' 27"	
	C20 – 4	37° 25' 32,4"	66° 54' 18,3"	
	C20 – 5	37° 23' 04,2"	65° 49' 29,8"	
	C20 – 6	37° 21' 18,4"	65° 43' 52,5"	
	C24 – 1	37° 39' 21,6"	63° 28' 19,6"	
RP N°24	C24 – 2	37° 39' 19,5"	63° 24' 49,8"	

En las calicatas C4-1, C10-2, C18-3, C18-5 y C18-6 no se realizó la determinación del peso específico por encontrarse el sustrato rocoso o presencia del nivel freático.

3.3.3.1 Ruta Provincial Nº 1

Figura 27: Ubicación de las calicatas Ruta Provincial Nº1

RP N°1									
N° CALICATA		DENSIDAD							
	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO				
	[cm]	[cm]	[cm]		[gr/cm³]				
C1-1	3	58	26	limo arcilloso	1,45				
		tosca	limo						
C1-2	3,5	32	39	limo arcilloso	1,5				
		tosca	limo						
C1-3	3	26	60	limo	1,39				
		tosca	Arena						
C1-4	4,5	46	36,5	limo	1,54				
		tosca	limo						

Tabla 5: Resumen de resultados de calicatas

Resumen de calicatas efectuadas en la RP Nº 1

De las calicatas efectuadas se desprende que la estructura posee una capa delgada asfáltica y una base de tosca de espesor variable.

3.3.3.2 Ruta Provincial Nº 4

Figura 28: Ubicación de las calicatas Ruta Provincial Nº4

RP N°4								
N° CALICATA		DENSIDAD						
	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO			
	[cm]	[cm]	[cm]		[gr/cm³]			
C4-1	4	26	20	rocoso				
		tosca	arena limosa					
C4-2	4	29	33	arena limosa	1,69			
		tosca	arena limosa					
C4-3	4	23,5	30	limo arcilloso	1,48			
		tosca	arena limosa					
C4-4	3,5	23	28	limo arcilloso	1,77			
		tosca	arena limosa					
C4-5	4	30	8	limo arcilloso	1,51			
		tosca	limo arenoso					
C4-6	4,5	30	13	limo arcilloso	1,16			
		tosca	limo arenoso					
C4-7	3,5	41	30	limo arcilloso	1,29			
		tocca	arona limoca					

arena limosa

Tabla 6: Resumen de resultados de calicatas

Resumen de calicatas efectuadas en la RP Nº 4

De las calicatas efectuadas se desprende que la estructura posee una capa delgada asfáltica del tipo de tratamiento superficial, una base de tosca de espesor variable entre 23 a 40 cm, y una subbase de limo arenoso.

3.3.3.3 Ruta Provincial Nº 10

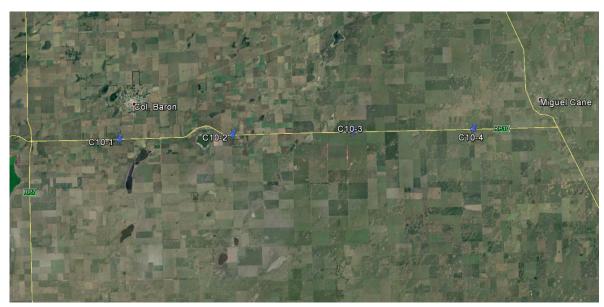


Figura 29: Ubicación de las calicatas Ruta Provincial Nº10

RP N°10 **ESTRUCTURA DENSIDAD CARPETA BASE SUB BASE SUBRASANTE SUELO SECO CALICATA** [cm] [cm] [cm] [gr/cm³] 30 C10-1 2,5 arena limosa 1,57 arena limosa tosca 30 46 C10-2 3,5 rocoso tosca arena limosa 29 60 C10-3 4 arena limosa 1,38 tosca arena limosa 33 40 C10-4 3 arena limosa 1,62 arena limosa tosca

Tabla 7: Resumen de resultados de calicatas

Resumen de calicatas efectuadas en la RP Nº 10

De las calicatas efectuadas se desprende que la estructura posee una capa delgada asfáltica del tipo de tratamiento superficial, una base de tosca de 30 cm de espesor, y una subbase de arena limosa.

3.3.3.4 Ruta Provincial Nº 18

Figura 30: Ubicación de las calicatas Ruta Provincial Nº18

Tabla 8: Resumen de resultados de calicatas

RP N°18									
N°		ESTRU	CTURA		DENSIDAD				
CALICATA	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO				
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]				
C10 1	2 E	29	70	arona limosa	1 40				
C18-1	3,5	tosca	arena limosa	arena limosa	1,49				
C10 2	4	29	39	arana limasa	1 42				
C18-2	4	tosca	limo	arena limosa	1,42				
C10 2	6	20	55	rococo					
C18-3	0	tosca	arena limosa	rocoso					
C18-4	7	35	75	limo arcilloso	1 44				
C18-4	,	tosca	arena limosa	iiiiio arciiioso	1,44				
C10 F	6.5	27	105	lima arcillaca					
C18-5	6,5	tosca	arena limosa	limo arcilloso					
		28	60						
C18-6	10	grava	60	nivel freático					
		angulosa	arena limosa						

Resumen de calicatas efectuadas en la RP Nº 18

De las calicatas efectuadas se desprenden dos tipos de estructuras, las calicatas C18-1 y 2 poseen una capa delgada asfáltica del tipo de tratamiento superficial, una base de tosca de 30 cm de espesor. En el resto de las calicatas se observa un espesor mayor de carpeta asfáltica.

3.3.3.5 Ruta Provincial Nº 20

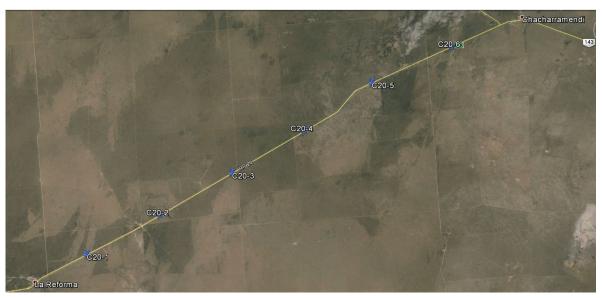


Figura 31: Ubicación de las calicatas Ruta Provincial Nº20

RP N°20									
N°	ESTRUCTURA								
CALICATA	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO				
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]				
C10 1	F F	30	45	limo arcilloso	1 50				
C18-1	5,5	tosca	arena limosa	iiiiio arciiioso	1,59				
C19 2	5	37	12	arena limosa	1 42				
C18-2	ס	tosca	arena limosa	arena mnosa	1,42				
C18-3	4.5	29	19	arena limosa	1,54				
C16-5	4,5	tosca	arena limosa	arena mnosa	1,54				
C18-4	4,5	39	40	arena limosa	1,57				
C16-4	4,5	tosca	arena limosa	arena mnosa	1,57				
C18-5	5	33	12	arona	1,57				
C16-5	5	tosca	arena limosa	arena	1,57				
C18-6	5	32	50	arona	1,56				
C10-0	5	tosca	arena fina	arena	1,30				

Tabla 9: Resumen de resultados de calicatas

Resumen de calicatas efectuadas en la RP Nº 20

De las calicatas efectuadas se desprende una estructura con dos capas delgadas asfálticas del tipo de tratamiento superficial, una base de tosca del orden de 30 cm de espesor.

3.3.3.6 Ruta Provincial Nº 24

Figura 32: Ubicación de las calicatas Ruta Provincial Nº24

Tabla 10: Resumen de resultados de calicatas

RP N°24									
N°	ESTRUCTURA				DENSIDAD				
CALICATA	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO				
CALICATA	[cm] [cm] [cm]			[gr/cm³]					
C18-1	5	27	60	limo arcilloso	1 57				
C16-1		tosca	arena limosa	iiiio arciiioso	1,57				
C19 2		30	56	lima aranasa	1 52				
C18-2	5,5	tosca	limo	limo arenoso	1,52				

Resumen de calicatas efectuadas en la RP Nº 24

De las calicatas efectuadas se desprende una estructura conformada por una carpeta asfáltica de 5 cm de espesor y una base de tosca del orden de 30 cm.

3.3.4 Ensayos realizados

En este apartado se describen los ensayos realizados por la Dirección Provincial de Vialidad de La Pampa, en los materiales extraídos de las calicatas realizadas.

En particular, los suelos resultan entre de baja plasticidad (con un máximo de IP=9,8%) a nula plasticidad. En muchos casos resultan sin límite plástico, situación característica de las arenas (que como se verá mas adelante poseen características granulométricas particulares).

Las granulometrías muestran suelos arenosos a finos (en la gran mayoría de los casos posee un 100% de pasante en el tamiz número #10, con casos excepcionales de retenido que no supera el 1,3%). Por otro lado poseen un bajo porcentaje de pasante en el tamiz #200 (un valor promedio de 4,25%, con un mínimo de 10% y un máximo de 80,3%).

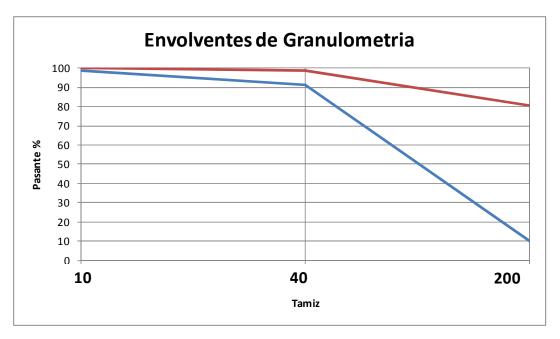


Figura 33: Envolventes de granulometrías

En cuanto a la clasificación (según AASHTO), la figura a continuación muestra los resultados de las calicatas estudiadas. La mayoría de los suelos son del tipo A-4.

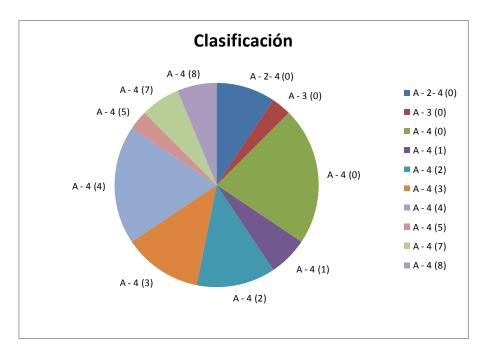


Figura 34: Tipos de suelos encontrados en calicatas



Figura 35: Tipos de suelos encontrados en calicatas

En cuanto a los ensayos de CBR los valores informados se encuentran entre 3 y 20%.

Con el objetivo de determinar el Módulo Resiliente de la Subrasante se efectuaron ensayos de valor soporte de manera que con la densidad in-situ se pueda determinar el CBR in-situ y por medio de éste el Módulo Resiliente.

Ruta Provincial N°1 - Tramo RN N° 35 a Salinas La Colorada:

Tramo Km 361,1-388,0; para una densidad in-situ de 1,39 un CBR de 3%.

Tramo Km 388,0-394,4; para una densidad in-situ de 1,54 un CBR de 3,5%.

Ruta Provincial N°4 - Tramo RN N° 35 a RP N°11:

Tramo RN N° 35-RP N°11, para una densidad in-situ de 1,79 un CBR de 5%.

Ruta Provincial N°10 - Tramo RP N° 1 a RP N°7:

Tramo Km 10,2-30,0; para una densidad in-situ de 1,38 un CBR de 3%.

Tramo Km 30,0-50,2; para una densidad in-situ de 1,57 un CBR de 4%.

Ruta Provincial N°18 - Tramo RP N° 1 a RP N°35:

Tramo Km 25,1-60,0; para una densidad in-situ de 1,49 un CBR de 3%.

Tramo Km 60,0-80,7; para una densidad in-situ de 1,49 un CBR de 3%.

Ruta Provincial N°20 - Tramo RP N°17 (La Reforma) a RN N°143 (Chacharramendi):

Tramo Km 194,4-220,0; para una densidad in-situ de 1,52 un CBR de 5%.

Tramo Km 220,0-249,5; para una densidad in-situ de 1,56 un CBR de 11%.

Ruta Provincial N°24 - Tramo Meridiano V y Guatrache:

Tramo Meridiano V y Guatrache, para una densidad in-situ de 1,52 un CBR de 3%.

4 ANÁLISIS E INTERPRETACIÓN DE RESULTADOS

Las rutas provinciales en análisis poseen un tránsito bajo en relación a las rutas nacionales, con vehículos pesados del orden del 20 % del TMDA.

Se ha verificado en general la evaluación de Estado realizada por la Dirección Provincial de Vialidad de La Pampa, con excepción de la ruta provincial Nº 24, que el relevamiento visual muestro un mejor estado superficial que el determinando en la evaluación del año 2015.

En general las fallas características de todas las rutas en análisis son ahuellamiento y fisuras tipo piel de cocodrilo, algunas con presencia de baches abiertos y cerrados.

Se ha verificado lo comentado por el personal técnico de la DPV, de que las estructuras empleadas en las rutas provinciales de la provincia de La Pampa, están compuestas por una base de tosca con una delgada carpeta asfáltica.

4.1 Identificación de aspectos relevantes

Como aspecto relevante se destaca la uniformidad de las estructuras y la generalización de las fallas observadas, lo cual puede reflejar la existencia de material calcáreo en la tosca empleada como base de estructuras. Este material calcáreo produce un efecto puzolánico en el capa, del tipo suelo - cemento. Este tipo de materiales sufren fisuraciones por dilatación y contracción, que puede dar origen a fisuras reflejas existentes en las calzadas.

4.2 Evaluación del Sistema

En este apartado se realiza el análisis de la información relevada para lograr una evaluación del sistema.

4.2.1 Metodología de aplicación

A los fines de evaluar estructuralmente el sistema vial en estudio, se aplicará la metodología del Método de Diseño ASSTHO 1993.

Para lo cual en primera instancia se determinarán el número acumulado de repeticiones de ejes equivalentes a 8,2 toneladas (18.000 libras) por trocha, N, de cada sección en estudio.

A tal fin se trabajará con los datos de tránsito y composición aportados por la Dirección Provincial de Vialidad de la Pampa.

La tasa de crecimiento del tránsito se determinará para cada ruta en estudio, en función de las series históricas disponibles, y se proyectará para el período de análisis.

Para determinar la cantidad de Ejes Equivalentes se aplica la expresión:

$$N = 0.5 \times \Sigma TPA \times F \times C_{TF}$$

Dónde:

 Σ TPD: Sumatoria de los Tránsitos Pasantes Anuales durante el período de diseño.

F: factor por número de trochas.

CTF: Truck Factor (factor por presencia de camiones) único tal que multiplicado por el número de camiones totales que circulan, permite obtener el total de Ejes Equivalentes.

Para el factor F, que toma en cuenta el número de trochas, se adopta, de acuerdo al método AASHTO 93 (AASHTO Guide for Design of Pavement Structures 93 - Part II - Chapter 2 - 2.1.2. Traffic - pág. II-9) y para el caso que nos ocupa de 1 trocha por dirección, F = 1,0.

En lo que respecta al factor CT, de conversión de ejes mixtos a ejes de 8.2 toneladas, por vehículo, las condiciones de operación registradas en la zona no presentan, a la vista de las cargas transportadas, importantes modificaciones respecto de parámetros observados en el resto del país; por esta razón, se considera representativa la adopción de los factores de equivalencia utilizados habitualmente por la Dirección Nacional de Vialidad en todo el país, los que se indican en el cuadro siguiente:

Tabla 11: Factores de Equivalencia por Eje (Dirección Nacional de Vialidad).

Tipo de Vehículo	Distribución	Número	Factor "C" de
Tipo de Verticulo	de Ejes	de Ejes	Equiv. por Eje
Automóviles – Camionetas	11	2	0,01
Ómnibus	11	2	0,07
Offilibus	12	3	0,07
Camián Sin Acanlada	11	2	0,60
Camión Sin Acoplado	12	3	0,38
	11-11	4	0,60
Camión Can Aganlada	11-12	5	0,39
Camión Con Acoplado	12-11	5	0,47
	12-12	6	0,32
	111	3	0,54
	112	4	0,45
Semirremolque	113	5	0,41
	122	5	0,35
	123	6	0,40
Semirremolque	111 112 113 122	3 4 5 5	0,54 0,45 0,41 0,35

Cabe aclarar que estos factores de equivalencia han sido deducidos para el caso de pavimentos flexibles, y por lo tanto son válidos exclusivamente para estos casos.

El factor combinado, CTF, por vehículo, se obtiene finalmente como promedio ponderado, tomando en cuenta los porcentajes de cada tipo de vehículo en el tramo.

El paso siguiente consiste en determinar el Número Estructural Efectivo, el cual indica la capacidad estructural actual del pavimento.

Para la determinación del Número Estructural Efectivo, se aplica la expresión: SNef = ∑ a´i. di . mi

dónde:

a´i: Coeficiente de aporte estructural de capa `i`, minimizado por el estado superficial de la calzada, según tabla adjunta del método AASTHO – Refuerzo de concreto asfáltico sobre pavimentos de concreto asfáltico.

di: Espesor de capa 'i'

mi: Coeficiente de drenaje de capa 'i'

En función del estado de deterioro de la calzada y aplicando los coeficientes sugeridos por el Método AASTHO, se obtendrán los coeficientes de aportes a'i que se aplicarán en cada tramo.

Los espesores de cada capa di, se determinarán de las calicatas efectuadas.

4.2.1.1 Determinación de la Vida Útil

Para la determinación de la vida útil de cada tramo, se sigue el procedimiento establecido en la Figura 3.2. (pág. II-36) del método de diseño AASHTO 93.

Los sucesivos valores del número estructural, SN, se determinan en cada caso mediante la aplicación de la ecuación de diseño indicada en la Figura 3.1 (pág. II-32) del método:

$$Log \ N = Z_R \times S_O + 9.36 \times \log(SN + 1) - 0.20 + \frac{\log \left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \times \log M_R - 8.07$$

donde:

N: Número acumulado de repeticiones de eje de 8,2 t.

ZR: Desviación Standard Normal, para el Nivel de Confiabilidad, R, seleccionado.

SO: Varianza.

SN: Número Estructural correspondiente al pavimento analizado.

ΔPSI: Caída admitida del Índice de Serviciabilidad.

MR: Módulo resiliente de la capa verificada.

A continuación se señalan los criterios utilizados para la adopción de los parámetros necesarios para la aplicación del método AASHTO 93.

En lo referente a los parámetros estadísticos, nivel de confiabilidad, R, y de desviación estándar, S0, se adoptan valores dentro de los recomendados por método (Part II – Chapter 2- 2.1.3 Reliability – Table 2.2. – página II – 9) para autopistas de tipo rural; esto es:

R = 85%, para el que corresponde una Desviación Standard, ZR = - 1,037

S0 = 0,49 (caso de pavimento flexible).

En lo que hace a la caída de serviciabilidad:

 $\Delta PSI = PSI(inicial) - PSI(final)$

De acuerdo al método AASHTO 93 (Part II – Chapter 2 - 2.2.1. Serviceability –página II-10) se adopta, para el caso de pavimento flexible, PSI(inicial) = 3.7, y para el caso de caminos principales PSI(final) = 2.0; por lo que se tiene:

 $\Delta PSI = 3.7 - 2.0 = 1.7$ (caso de pavimento flexible)

En lo que respecta a los factores, mi, que toman en cuenta las condiciones de drenaje, se siguen las recomendaciones del método de diseño (Part II – Chapter 2 – 2.4.1. Drainage – Table 2.4. – página II-25); de acuerdo a las condiciones

particulares del presente caso, esto es, obras que aseguran un drenaje relativamente bueno y una sola estación lluviosa, se ha adoptado:

$$m2 = m3 = 1.00$$

A los fines de la aplicación de esta ecuación resta definir el módulo de resiliencia, MR, de la subrasante. A tal efecto se aplica la Figura 2.7; en este caso, para

$$M_R$$
 subrasante = 1.500 $xCBR[p.s.i.]$

Como el objetivo es determinar la vida útil, se aplica la ecuación anterior, entrando con el número estructural obtenido por el método de calicatas y observación visual, y obtenemos el número de repeticiones de Ejes Equivalentes. En función de la proyección de Ejes Equivalentes realizada, se determina la cantidad de años de vida útil de cada sección estudiada.

4.2.2 Estimación de la Evolución del Tránsito. Tasas de Crecimiento

Nuevamente sobre la base de información proporcionada por la Dirección Provincial de Vialidad se examinaron las series históricas con detalle para identificar patrones de crecimiento. Las series tratadas corresponden a los siguientes puntos.

- RPN°18 entre RPN°1 (KM 25,13) a RPN°3 (Km 40,17)
- RPN°20 entre RNN°143 (KM 194,36) a RPN°17 (Km 246,87)
- RPN°24 entre Meridiano V (KM 0,00) a RPN°1 (Km 23,60)
- RPN°1 entre RP4 (KM 55,71) a fin (Km 71,5) (nota: este tramo no corresponde al tramo en estudio, se utiliza como aproximación a falta de datos)
- RPNº18 entre Meridiano V (Km 0,00) a RP1 (Km 25,13) (nota: este tramo no corresponde al tramo en estudio, se utiliza como aproximación a falta de datos)

Sobre estas localizaciones se confeccionaron series históricas que se describen a continuación.

					\ <i>I</i>	,
año	r18TMDA	r20TMDA	r24TMDA	r01TMDA	r18aTMDA	PBImill
1988				739	410	
1989	442	279	392	817	475	
1990						
1991						
1992	869	670	986	1181	827	
1993	573	870	898	2328	824	236.504,98
1994				1176		250.307,89
1995	538	447	511	1457	570	243.186,1
1996	589	547	489	1470	649	256.626,24
1997	535	508	512	1492	609	277.441,32
1998	547	703	541	1513	569	288.123,3
1999	386	543	537	1495	570	278.368,26
2000	1001	717	685	1558	700	276.172,69
2001	500	378	456	908	704	263.996,67
2002	304	394	479	1143	560	235.235,6
2003	505	335	422	1597	588	256.023,47
2004	545	585	547	1721	624	279.141,29
2005	538	580	614	1873	636	304.763,53
2006	665	456	507	1952	762	330.564,97
2007	735		306	2078	794	359.169,9
2008	729	814	1175	1875	739	383.230,63
2009		576		2107		386.699,79
2010	726	557	577	1968	718	422.130,05
2011	590		490	1836	693	459.571,1

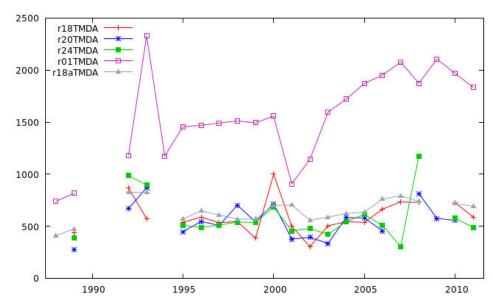


Figura 36: Representación de las series históricas de tránsito

Se observa un comportamiento un tanto errático y en general, sin crecimiento evidente.

Para estimar las posibles tasas de crecimiento se ha recurrido a la prueba de variados modelos. Algunos de ellos sobre la base del propio crecimiento vegetativo de las series y otros en función de relaciones con variables representativas de la evolución de la actividad económica. Se consideró para ello el PBI de Argentina. La serie considerada se expresa en millones de \$ de valores constantes de 1993. No se consideraron otras variables a causa de:

- Falencias en los datos, falencia en la disponibilidad de series completas (tal es el caso del PBG de La Pampa)
- Falta de una desagregación temporal adecuada (tal es el caso de datos censales sobre población)
- Complejidad en el pronóstico (el pronóstico de la variable a considerar es mas complicado que el pronóstico del TMDA por si mismo)

Los modelos considerados se describen a continuación:

· Crecimiento anual absoluto constante

$$TMDAn = \beta 0 + \beta 1 * n$$

Donde "n" es el número de años y β1 el crecimiento anual constante.

Crecimiento de tasas anuales acumulativas

$$TMDAn = \beta 0 * (1+r)^n$$

Donde "n" es el número de años y "r" es la tasa anual acumulativa

Crecimiento absoluto constante en relación al PBI.

$$TMDAn = \beta 0 + \beta 1 * PBIn$$

Donde β1 es el crecimiento del TMDA por cada unidad de variación del PBI (en millones)

Relación de Elasticidad entre el TMDA y el PBI

$$TMDAn = \beta 0 * PBI^{\beta 1}$$

Donde β1 es la elasticidad entre el TMDA y el PBI

$$E = \Delta\%TMDA/\Delta\%PBI$$

En ningún modelo se utilizó el valor de "n" y de "PBI" conjuntamente por problemas de colinealidad.

$$\rho(n, PBI) = 0.86$$

En todos los casos las relaciones resultaron ser pobres en el sentido de que la variabilidad del tránsito es muy pronunciada y la predicción (es decir establecer un promedio de valores a futuro) tiene rangos de variación muy amplios (R2 bajos). Por otro lado en muchos casos se aprecia que los coeficientes de regresión no son significativos con lo que no existe vinculación entre TMDA con el tiempo (el crecimiento vegetativo parece nulo) ni con el PBI (no hay evidencia de asociación).

Se probaron modelos para cada una de las series de TMDA en los puestos en las localizaciones mencionadas (también se comprobaron resultados utilizando series históricas de camiones que no se incluyen porque resultan en forma similar al TMDA).

Tabla 13: Modelo de crecimiento anual absoluto del TMDA

Variable	Constante	Variable año	R2	Tasa calculada (*)
r18TMDA	No Significativa	No Significativa	0,021889	0,61%
r20TMDA	No Significativa	No Significativa	0,004673	0,32%
r24TMDA	No Significativa	No Significativa	0,005821	-0,47%
r01TMDA	Si Significativa	Si Significativa	0,431941	2,08%
r18aTMDA	Si Significativa	Si Significativa	0,177078	-0,05%

(*) en porcentaje sobre el último valor estimado de cada serie, año 2011

Tabla 14: Modelos de tasas anuales acumulativas

Variable	Constante	Variable año	R2	Tasa calculada
Log r18TMDA	No Significativa	No Significativa	0,029688	0,76%
Log r20TMDA	No Significativa	No Significativa	0,01886	0,69%
Log r24TMDA	No Significativa	No Significativa	0,009299	-0,49%
Log r01TMDA	Si Significativa	Si Significativa	0,459942	3,15%
Log r18aTMDA	No Significativa	Si Significativa	0,227339	1,29%

Tabla 15: Modelos de tasas establecidas por elasticidad con el PBlarg

		•		_	
Variable	Constante	Variable Log de PBI	R2	Elasticida d calculada	Tasa Calculada (*) ejemplo
Log r18TMDA	No Significativa	Si Significativa	0,2246	0,622289	1,87%
Log r20TMDA	No Significativa	No Significativa	0,0786	0,419596	1,26%
Log r24TMDA	No Significativa	No Significativa	0,0025	0,0734792	0,22%
Log r01TMDA	No Significativa	Si Significativa	0,2986	0,630687	1,89%
Log r18aTMDA	No Significativa	Si Significativa	0,1925	0,272471	0,82%

(*) Asumiendo un crecimiento del PBI del 3% anual acumulativo constante a modo de ejemplo

De esta manera, sobre la base de la historia se ha identificado que las series son estables en cuanto a su crecimiento reducido a nulo. Sin embargo se han identificado rachas crecientes y decrecientes de siete años consecutivos. Por otro lado las expectativas de crecimiento de la producción son marcadas en la región. De esta manera la historia no sería un buen indicio para enmarcar el posible crecimiento. En el ámbito internacional se asume que el crecimiento del tránsito puede esperarse en el largo plazo y en promedio en valores cercanos al 3%. Entonces, para este caso en particular se adoptarán tasas de este valor como un escenario conservador sin aumentar en gran medida la inversión (Si la evolución del tránsito real es mas reducida el pavimento resistiría las solicitaciones y se prolongaría su vida útil. Si se adoptara una evolución del tránsito reducida y en realidad fuera mas alta el pavimento reduciría su vida útil y se deterioraría mas rápido).

4.2.3 Determinación del Número de Ejes Equivalentes

Considerando la metodología expuesta en el apartado 4.2.1 se realizó el cálculo de los ejes equivalentes para cada ruta como se muestra en los apartados siguientes.

4.2.3.1 Ruta Provincial N°1 - Tramo RN N° 35 - Salinas La Colorada.

A los fines de determinar el número acumulado de repeticiones de ejes equivalentes a 8,2 toneladas (18.000 libras) por trocha, N, se trabajó sobre los relevamientos de Dirección Provincial de Vialidad La Pampa.

Tabla 16: TMDA Noviembre 2015. DPV La Pampa

		% Automóvi les – Camionet as		0mnihus	sin	sin	con	% Camión con Acoplado 1112	con	con	% Semirrem				% Semirrem olque 123	
RUTA N°	TRAMO															TMDA
RP № 1	RP №24 - RN № 35	73,2	0,0	0,5	9,1	0,0	2,1	5,2	5,2	0,0	0,4	2,3	1,0	1,0	0,2	563

Los tránsitos que se aplican a las secciones en estudio son:

Tabla 17:TMDA 2015.

Sección	TMDA 2015
RP24 a RN35	563

Para determinar la composición de tránsito se emplearán los censos de Cobertura en el tramo RP N°24 a RN N°35.

De este modo se llega a los valores indicados en las tablas siguientes:

Tabla 18: Factor Ponderado de Pavimentos Flexibles.

Tipo de Vehículo	Distribución de ejes	Número de ejes (1)	Factor "C" de equiv. Por eje (2)	Composición (%) (3)	Factor "C" (1x2x3)
Automóviles – Camionetas	11	2	0,01	73,18	0,0146
	11	2	0,07	0,00	0,0000
Ómnibus	12	3	0,07	0,53	0,0011
Camión Sin	11	2	0,6	9,06	0,1087
Acoplado	12	3	0,38	0,00	0,0000
	1111	4	0,6	2,13	0,0512
	1112	5	0,39	5,15	0,1004
Camión Con	1211	5	0,47	5,15	0,1210
Acoplado	1212	6	0,32	0,00	0,0000
	111	3	0,54	0,36	0,0058
	112	4	0,45	2,31	0,0416
	113	5	0,41	0,98	0,0200
	122	5	0,35	0,98	0,0171
Semirremolque	123	5	0,4	0,18	0,0036
				Factor Ponderado	0,4851

La tabla siguiente resume el cálculo de los Ejes Equivalentes para el año 2015.

Tabla 19: Resumen Ejes equivalentes.

TMDA 2015	563
dirección	0,5
días	365
Nro carriles 2	1
Factor 8,2	2,2
Factor ponder	0,485098
Tasa de	
Crecimiento	0,03
Ejes Equiv 2015	109.654

Tabla 20: ejes equivalentes acumulados de RP N°1.

Año	Tasa de Crecimiento	EEq MDA	EEq MDA Acumulado	EEq Anual Acumulado
2015	3,00%	300	300	109.654
2016	3,00%	309	309	112.943
2017	3,00%	319	628	229.275
2018	3,00%	328	956	349.096
2019	3,00%	338	1.295	472.513
2020	3,00%	348	1.643	599.631
2021	3,00%	359	2.002	730.563
2022	3,00%	369	2.371	865.424
2023	3,00%	381	2.752	1.004.330
2024	3,00%	392	3.144	1.147.403
2025	3,00%	404	3.547	1.294.768
2026	3,00%	416	3.963	1.446.554
2027	3,00%	428	4.391	1.602.894
2028	3,00%	441	4.833	1.763.924
2029	3,00%	454	5.287	1.929.785

4.2.3.2 Ruta Provincial N°4 - Tramo RN N° 35 - RP Nº9.

A los fines de determinar el número acumulado de repeticiones de ejes equivalentes a 8,2 toneladas (18.000 libras) por trocha, N, se trabajó sobre los relevamientos de Dirección Provincial de Vialidad La Pampa.

Tabla 21: TMDA Noviembre 2015. DPV La Pampa

		% Automóvi les – Camionet as	% Omnibus 11	% Omnihus	sin	sin	% Camión con Acoplado 1111	con	con	con	% Semirrem				% Semirrem olque 123	
RUTA N°	TRAMO															TMDA
	Caleufu - RP Nº 11	83,3	1.3	0.9	7.3	0,2	1.8	2.0	2.0	0.0	0.0	0.7	0.3	0.3	0.0	454

Los tránsitos que se aplican a las secciones en estudio son:

Tabla 22:TMDA 2015.

Sección	TMDA 2015
Caleufu a RP N°11	454

Para determinar la composición de tránsito se emplearán los censos de Cobertura en el tramo Caleufu a RP Nº11.

De este modo se llega a los valores indicados en las tablas siguientes:

Tabla 23: Factor Ponderado de Pavimentos Flexibles.

Tipo de Vehículo	Distribución de ejes	Número de ejes (1)	Factor "C" de equiv. Por eje (2)	Composición (%) (3)	Factor "C" (1x2x3)
Automóviles –					
Camionetas	11	2	0,01	83,26	0,0167
	11	2	0,07	1,32	0,0019
Ómnibus	12	3	0,07	0,88	0,0019
Camión Sin	11	2	0,6	7,27	0,0872
Acoplado	12	3	0,38	0,22	0,0025
	1111	4	0,6	1,76	0,0423
	1112	5	0,39	1,98	0,0387
Camión Con	1211	5	0,47	1,98	0,0466
Acoplado	1212	6	0,32	0,00	0,0000
	111	3	0,54	0,00	0,0000
	112	4	0,45	0,66	0,0119
	113	5	0,41	0,33	0,0068
	122	5	0,35	0,33	0,0058
Semirremolque	123	5	0,4	0,00	0,0000
				Factor	0.0004
				Ponderado	0,2621

La tabla siguiente resume el cálculo de los Ejes Equivalentes para el año 2015.

Tabla 24: Resumen Ejes equivalentes.

TMDA 2015	454
dirección	0,5
días	365
Nro carriles 2	1
Factor 8,2	2,2
Factor ponder	0,26207
Tasa de	
Crecimiento	0,03
Ejes Equiv 2015	47.770

Tabla 25: ejes equivalentes acumulados de RP N°4 Tramo Caleufu-RP N°11.

Año	Tasa de Crecimiento	EEq MDA	EEq MDA Acumulado	EEq Anual Acumulado
2015	3,00%	131	131	47.770
2016	3,00%	135	135	49.204
2017	3,00%	139	274	99.883
2018	3,00%	143	417	152.083
2019	3,00%	147	564	205.849
2020	3,00%	152	716	261.229
2021	3,00%	156	872	318.269
2022	3,00%	161	1.033	377.021
2023	3,00%	166	1.199	437.535
2024	3,00%	171	1.369	499.864
2025	3,00%	176	1.545	564.064
2026	3,00%	181	1.727	630.189
2027	3,00%	187	1.913	698.299
2028	3,00%	192	2.105	768.451
2029	3,00%	198	2.303	840.708

4.2.3.3 Ruta Provincial N°4 - Tramo RP N° 9 - RP №11.

A los fines de determinar el número acumulado de repeticiones de ejes equivalentes a 8,2 toneladas (18.000 libras) por trocha, N, se trabajó sobre los relevamientos de Dirección Provincial de Vialidad La Pampa.

Tabla 26: TMDA Noviembre 2015. DPV La Pampa

		% Automóvi les – Camionet as		0mnihus	sin	sin	% Camión con Acoplado 1111	con	con	con Aconlado	% Semirrem				% Semirrem olque 123	
RUTA N°	TRAMO															TMDA
RP № 4	RP N° 11- Limite San Luis	84,2	0,0	1,5	7,7	0,0	0,5	2,0	2,0	0,0	0,0	1,5	0,3	0,3	0,0	196

Los tránsitos que se aplican a las secciones en estudio son:

Tabla 27:TMDA 2015.

Sección	TMDA 2015
RP N°11 a Límite Pcia. San Luis	196

Para determinar la composición de tránsito se emplearán los censos de Cobertura en el tramo RP Nº11 a Pcia. San Luis.

De este modo se llega a los valores indicados en las tablas siguientes:

Tabla 28: Factor Ponderado de Pavimentos Flexibles.

Tipo de Vehículo	Distribución de ejes	Número de ejes (1)	Factor "C" de equiv. Por eje (2)	Composición (%) (3)	Factor "C" (1x2x3)
Automóviles – Camionetas	11	2	0,01	84,18	0,0168
Garmonetas	11	2	0,07	0,00	0,0000
Ómnibus	12	3	0,07	1,53	0,0032
	11	2	0,6	7,65	0,0918
Camión Sin Acoplado	12	3	0,38	0,00	0,000
	1111	4	0,6	0,51	0,0122
	1112	5	0,39	2,04	0,0398
Camión Con	1211	5	0,47	2,04	0,0480
Acoplado	1212	6	0,32	0,00	0,0000
	111	3	0,54	0,00	0,0000
	112	4	0,45	1,53	0,0276
	113	5	0,41	0,26	0,0052
	122	5	0,35	0,26	0,0045
Semirremolque	123	5	0,4	0,00	0,0000
				Factor Ponderado	0,2491

La tabla siguiente resume el cálculo de los Ejes Equivalentes para el año 2015.

Tabla 29: Resumen Ejes equivalentes.

TMDA 2015	196
dirección	0,5
días	365
Nro carriles 2	1
Factor 8,2	2,2
Factor ponder	0,249133
Tasa de	
Crecimiento	0,03
Ejes Equiv 2015	19.605

Tabla 30: ejes equivalentes acumulados de RP N°4 Tramo - RP N°11 a Limite Pcia. San Luis.

Año	Tasa de Crecimiento	EEq MDA	EEq MDA Acumulado	EEq Anual Acumulado
2015	3,00%	54	54	19.605
2016	3,00%	55	55	20.193
2017	3,00%	57	112	40.993
2018	3,00%	59	171	62.416
2019	3,00%	60	231	84.482
2020	3,00%	62	294	107.210
2021	3,00%	64	358	130.619
2022	3,00%	66	424	154.731
2023	3,00%	68	492	179.567
2024	3,00%	70	562	205.147
2025	3,00%	72	634	231.495
2026	3,00%	74	709	258.633
2027	3,00%	77	785	286.585
2028	3,00%	79	864	315.376
2029	3,00%	81	945	345.031

4.2.3.4 Ruta Provincial N°10 - Tramo RP N° 1- RP Nº7.

A los fines de determinar el número acumulado de repeticiones de ejes equivalentes a 8,2 toneladas (18.000 libras) por trocha, N, se trabajó sobre los relevamientos de Dirección Provincial de Vialidad La Pampa.

Tabla 31: TMDA Noviembre 2015. DPV La Pampa

		% Automóvi les – Camionet as	% Omnibus 11	% Omnibus 12	sin	sin	% Camión con Acoplado 1111	con	con	con	% Semirrem				% Semirrem olque 123	
RUTA N°	TRAMO															TMDA
RP №10	RP Nº1- C. Baron	79,2	0,0	0,4	7,1	0,0	2,8	4,6	4,6	0,0	0,0	0,7	0,4	0,4	0,0	283

Los tránsitos que se aplican a las secciones en estudio son:

Tabla 32:TMDA 2015.

Sección	TMDA 2015
RP Nº1 a Colonia Barón	283

Para determinar la composición de tránsito se emplearán los censos de Cobertura en el tramo

RP Nº1 a Colonia Barón.

De este modo se llega a los valores indicados en las tablas siguientes:

Tabla 33: Factor Ponderado de Pavimentos Flexibles.

Tipo de Vehículo	Distribución de ejes	Número de ejes (1)	Factor "C" de equiv. Por eje (2)	Composición (%) (3)	Factor "C" (1x2x3)	
Automóviles –						
Camionetas	11	2	0,01	79,15	0,0158	
	11	2	0,07	0,00	0,0000	
Ómnibus	12	3	0,07	0,35	0,0007	
Camión Sin	11	2	0,6	7,07	0,0848	
Acoplado	12	3	0,38	0,00	0,0000	
	1111	4	0,6	2,83	0,0678	
	1112	5	0,39	4,59	0,0896	
Camión Con	1211	5	0,47	4,59	0,1080	
Acoplado	1212	6	0,32	0,00	0,0000	
	111	3	0,54	0,00	0,0000	
	112	4	0,45	0,71	0,0127	
	113	5	0,41	0,35	0,0072	
	122	5	0,35	0,35	0,0062	
Semirremolque	123	5	0,4	0,00	0,0000	
				Factor		
				Ponderado	0,3929	

La tabla siguiente resume el cálculo de los Ejes Equivalentes para el año 2015.

Tabla 34: Resumen Ejes equivalentes.

TMDA 2015	283
dirección	0,5
días	365
Nro carriles 2	1
Factor 8,2	2,2
Factor ponder	0,392898
Tasa de	
Crecimiento	0,03
Ejes Equiv 2015	44.643

Tabla 35: ejes equivalentes acumulados de RP N°10 Tramo RP N°1 a Colonia Barón.

Año	Tasa de Crecimiento	EEq MDA	EEq MDA Acumulado	EEq Anual Acumulado
2015	3,00%	122	122	44.643
2016	3,00%	126	126	45.982
2017	3,00%	130	256	93.344
2018	3,00%	134	389	142.126
2019	3,00%	138	527	192.372
2020	3,00%	142	669	244.125
2021	3,00%	146	815	297.431
2022	3,00%	150	965	352.336
2023	3,00%	155	1.120	408.888
2024	3,00%	160	1.280	467.137
2025	3,00%	164	1.444	527.133
2026	3,00%	169	1.614	588.929
2027	3,00%	174	1.788	652.579
2028	3,00%	180	1.968	718.138
2029	3,00%	185	2.153	785.665

4.2.3.5 Ruta Provincial N°18 - Tramo RP N°1 - RN №35.

A los fines de determinar el número acumulado de repeticiones de ejes equivalentes a 8,2 toneladas (18.000 libras) por trocha, N, se trabajó sobre los relevamientos de Dirección Provincial de Vialidad La Pampa.

Tabla 36: TMDA Noviembre 2015. DPV La Pampa

		% Automóvi les – Camionet as	% Omnibus 11	%	sin	sin	con	% Camión con Acoplado 1112	con	con	% Semirrem				% Semirrem olque 123	
RUTA N°	TRAMO															TMDA
RP № 18	RP N° 1 - RN N° 35	70,1	2,1	1,4	5,1	0,0	1,5	2,1	2,1	0,0	0,9	6,4	4,1	4,1	0,2	802

Los tránsitos que se aplican a las secciones en estudio son:

Tabla 37:TMDA 2015.

Sección	TMDA 2015
RP N°1 a RN N°35	802

Para determinar la composición de tránsito se emplearán los censos de Cobertura en el tramo RP Nº1 a RN Nº35.

De este modo se llega a los valores indicados en las tablas siguientes:

Tabla 38: Factor Ponderado de Pavimentos Flexibles.

Tipo de Vehículo	Distribución de ejes	Número de ejes (1)	Factor "C" de equiv. Por eje (2)	Composición (%) (3)	Factor "C" (1x2x3)	
Automóviles – Camionetas	11	2	0,01	70,07	0,0140	
Garmonetas	11	2	0,07	2,12	0,0030	
Ómnibus	12	3	0,07	1,37	0,0029	
Camión Sin	11	2	0,6	5,11	0,0613	
Acoplado	12	3	0,38	0,00	0,0000	
	1111	4	0,6	1,50	0,0359	
	1112	5	0,39	2,12	0,0413	
Camión Con	1211	5	0,47	2,12	0,0498	
Acoplado	1212	6	0,32	0,00	0,0000	
	111	3	0,54	0,87	0,0141	
	112	4	0,45	6,36	0,1145	
	113	5	0,41	4,05	0,0831	
	122	5	0,35	4,05	0,0709	
Semirremolque	123	5	0,4	0,25	0,0050	
				Factor Ponderado	0,4958	

La tabla siguiente resume el cálculo de los Ejes Equivalentes para el año 2015.

Tabla 39: Resumen Ejes equivalentes.

TMDA 2015	802
dirección	0,5
días	365
Nro carriles 2	1
Factor 8,2	2,2
Factor ponder	0,495848
Tasa de	
Crecimiento	0,03
Ejes Equiv 2015	159.665

Tabla 40: ejes equivalentes acumulados de RP N°18 Tramo RP N°1 a RN N°35.

Año	Tasa de Crecimiento	EEq MDA	EEq MDA Acumulado	EEq Anual Acumulado
2015	3,00%	437	437	159.665
2016	3,00%	451	451	164.454
2017	3,00%	464	915	333.843
2018	3,00%	478	1.393	508.312
2019	3,00%	492	1.885	688.016
2020	3,00%	507	2.392	873.111
2021	3,00%	522	2.914	1.063.759
2022	3,00%	538	3.452	1.260.126
2023	3,00%	554	4.007	1.462.384
2024	3,00%	571	4.577	1.670.710
2025	3,00%	588	5.165	1.885.286
2026	3,00%	606	5.771	2.106.299
2027	3,00%	624	6.394	2.333.942
2028	3,00%	642	7.037	2.568.415
2029	3,00%	662	7.698	2.809.922

4.2.3.6 Ruta Provincial N°20, tramo RP N°17- RN N°143

A los fines de determinar el número acumulado de repeticiones de ejes equivalentes a 8,2 toneladas (18.000 libras) por trocha, N, se trabajó sobre los relevamientos de Dirección Provincial de Vialidad La Pampa.

Tabla 41: TMDA Noviembre 2015. DPV La Pampa

		% Automóvi les – Camionet as		% Omnibus 12	sin	% Camión sin acoplado 12	con	con	con	con	% Semirrem				% Semirrem olque 123	
RUTA N°	TRAMO															TMDA
RP №20	RP N° 15 - RP N° 17	46,1	0,1	4,0	7,3	0,9	0,7	1,6	1,6	0,1	2,7	13,7	9,3	9,3	2,4	672

Los tránsitos que se aplican a las secciones en estudio son:

Tabla 42:TMDA 2015.

Sección	TMDA 2015
RP N°15 a RP N°17	672

Para determinar la composición de tránsito se emplearán los censos de Cobertura en el tramo RP Nº15 a RP Nº17.

De este modo se llega a los valores indicados en las tablas siguientes:

Tabla 43: Factor Ponderado de Pavimentos Flexibles.

Tipo de Vehículo	Distribución de ejes	Número de ejes (1)	Factor "C" de equiv. Por eje (2)	Composición (%) (3)	Factor "C" (1x2x3)	
Automóviles –						
Camionetas	11	2	0,01	46,13	0,0092	
	11	2	0,07	0,15	0,0002	
Ómnibus	12	3	0,07	4,02	0,0084	
Camión Sin	11	2	0,6	7,29	0,0875	
Acoplado	12	3	0,38	0,89	0,0102	
	1111	4	0,6	0,74	0,0179	
	1112	5	0,39	1,64	0,0319	
Camión Con	1211	5	0,47	1,64	0,0385	
Acoplado	1212	6	0,32	0,15	0,0029	
	111	3	0,54	2,68	0,0434	
	112	4	0,45	13,69	0,2464	
	113	5	0,41	9,30	0,1907	
	122	5	0,35	9,30	0,1628	
Semirremolque	123	5	0,4	2,38	0,0476	
				Factor		
				Ponderado	0,8975	

La tabla siguiente resume el cálculo de los Ejes Equivalentes para el año 2015.

Tabla 44: Resumen Ejes equivalentes.

TMDA 2015	672
dirección	0,5
días	365
Nro carriles 2	1
Factor 8,2	2,2
Factor ponder	0,897515
Tasa de	
Crecimiento	0,03
Ejes Equiv 2015	242.157

Tabla 45: ejes equivalentes acumulados de RP N°20 Tramo RP N°15 a RN N°17.

Año	Tasa de Crecimiento	EEq MDA	EEq MDA Acumulado	EEq Anual Acumulado
2015	3,00%	663	663	242.157
2016	3,00%	683	683	249.421
2017	3,00%	704	1.387	506.325
2018	3,00%	725	2.112	770.937
2019	3,00%	747	2.859	1.043.486
2020	3,00%	769	3.628	1.324.212
2021	3,00%	792	4.420	1.613.360
2022	3,00%	816	5.236	1.911.182
2023	3,00%	840	6.077	2.217.939
2024	3,00%	866	6.942	2.533.898
2025	3,00%	892	7.834	2.859.337
2026	3,00%	918	8.752	3.194.538
2027	3,00%	946	9.698	3.539.796
2028	3,00%	974	10.672	3.895.411
2029	3,00%	1.004	11.676	4.261.695

4.2.3.7 Ruta Provincial N°24, tramo MERIDIANO V - Guatrache.

A los fines de determinar el número acumulado de repeticiones de ejes equivalentes a 8,2 toneladas (18.000 libras) por trocha, N, se trabajó sobre los relevamientos de Dirección Provincial de Vialidad La Pampa.

Tabla 46: TMDA Noviembre 2015. DPV La Pampa

		% Automóvi les – Camionet as		% Omnibus 12	sin	sin	% Camión con Acoplado 1111	con	con	con	% Semirrem		% Semirrem olque 113			
RUTA N°	TRAMO															TMDA
RP № 24	Meridiano V - Guatrache	83,7	0,2	0,5	6,4	0,2	0,9	2,7	2,7	0,0	0,3	1,7	0,4	0,4	0,0	655

Los tránsitos que se aplican a las secciones en estudio son:

Tabla 47:TMDA 2015.

Sección	TMDA 2015
MERIDIANO V - Guatrache	655

Para determinar la composición de tránsito se emplearán los censos de Cobertura en el Tramo MERIDIANO V - Guatrache.

De este modo se llega a los valores indicados en las tablas siguientes:

Tabla 48: Factor Ponderado de Pavimentos Flexibles.

Tipo de Vehículo	Distribución de ejes	Número de ejes (1)	Factor "C" de equiv. Por eje (2)	Composición (%) (3)	Factor "C" (1x2x3)	
Automóviles –						
Camionetas	11	2	0,01	83,66	0,0167	
	11	2	0,07	0,15	0,0002	
Ómnibus	12	3	0,07	0,46	0,0010	
Camión Sin	11	2	0,6	6,41	0,0769	
Acoplado	12	3	0,38	0,15	0,0017	
	1111	4	0,6	0,92	0,0220	
	1112	5	0,39	2,75	0,0536	
Camión Con	1211	5	0,47	2,75	0,0646	
Acoplado	1212	6	0,32	0,00	0,0000	
	111	3	0,54	0,31	0,0049	
	112	4	0,45	1,68	0,0302	
	113	5	0,41	0,38	0,0078	
	122	5	0,35	0,38	0,0067	
Semirremolque	123	5	0,4	0,00	0,0000	
				Factor		
				Ponderado	0,2864	

La tabla siguiente resume el cálculo de los Ejes Equivalentes para el año 2015.

Tabla 49: Resumen Ejes equivalentes.

TMDA 2015	655
dirección	0,5
días	365
Nro carriles 2	1
Factor 8,2	2,2
Factor ponder	0,286427
Tasa de	
Crecimiento	0,03
Ejes Equiv 2015	75.325

Tabla 50: ejes equivalentes acumulados de RP N°24 Tramo MERIDIANO V - Guatrache.

Año	Tasa de Crecimiento	EEq MDA	EEq MDA Acumulado	EEq Anual Acumulado
2015	3,00%	206	206	75.325
2016	3,00%	213	213	77.585
2017	3,00%	219	432	157.498
2018	3,00%	226	657	239.808
2019	3,00%	232	889	324.587
2020	3,00%	239	1.129	411.910
2021	3,00%	246	1.375	501.853
2022	3,00%	254	1.629	594.493
2023	3,00%	261	1.890	689.913
2024	3,00%	269	2.159	788.196
2025	3,00%	277	2.437	889.427
2026	3,00%	286	2.722	993.695
2027	3,00%	294	3.017	1.101.091
2028	3,00%	303	3.320	1.211.709
2029	3,00%	312	3.632	1.325.645

4.3 Análisis de los resultados de estudios de suelos

De las calicatas efectuadas y las muestras alteradas extraídas se realizaron ensayos de clasificación de suelos (ensayos efectuados por la DPV La Pampa), y en función de la homogeneidad de suelos encontrados, se realizaron ensayos de compactación y valor soporte.

A continuación se resumen los resultados de los ensayos para cada ruta en estudio.

Ruta Provincial Nº 1

La tabla adjunta muestra los tipos de suelo característicos de la ruta.

Tabla 51: Tipos de suelo RP N°1

	,															
							RP N°1									
	UBICACION		ESTRU	CTURA		DENCIDAD		PROCTOR		% DENSIDAD			C E	3 R		
N° CALICATA	RP N°1	CARPETA	BASE	SUB BASE	SUBRASANTE		CLASIFICACION	DENSIDAD MAXIMA	HUMEDAD OPTIMA	IN-SITU MAX	12		2	5	5	6
	[Km]	[cm]	[cm]	[cm]		[gr/cm³]	l	[Kg/m³]	%	%	D	CBR	D	CBR	D	CBR
C1-1	368,0	3	58 tosca	26 limo	limo arcilloso	1,45	A - 4 (5)									
C1-2	376,0	3,5	32 tosca	39 limo	limo arcilloso	1,5										
C1-3	384,0	3	26 tosca	60 Arena	limo	1,39	A - 4 (3)	1,718	16,6	81%	1536	6,5	1647	18,1	1741	28,0
C1-4	392,0	4,5	46 tosca	36,5 limo	limo	1,54	A - 2 - 4 (0)	1,77	14,2	87%	1523	3,6	1640	14,6	1734	32,4

Se destacan los suelos A4 y A2-4, a los fines de caracterizar la resistencia de los mismos se eligieron las muestras C1-3 para los suelos A4 y C1-4 para los suelos A2-4.

De la comparación de entre densidad in situ y densidad máxima de Proctor, se destaca el bajo grado de compactación existente en subrasante, no alcanzándose en ningún caso el 90% de la densidad máxima. Por tal motivo se adoptó para el diseño un valor de CBR de 3%.

Ruta Provincial Nº 4

La tabla adjunta muestra los tipos de suelo característicos de la ruta.

RP N°4 UBICACION ESTRUCTURA PROCTOR % DENSIDAD IN-SITU CBR DENSIDAD DENSIDAD CARPETA BASE SUB BASE SUBRASANTE SUELO SECO CALICATA MAXIMA OPTIMA MAX [cm] [cm] [Kg/m³] C4-1 151,5 tosca ena limos A - 4 (3) 1,785 15,6 95% 1558 1684 13,4 1797 C4-2 141,9 4 1,69 arena limosa tosca arena limos 132,3 4 A - 4 (2) a limo limo arcilloso C4-4 122,7 1,77 A - 4 (4) na limo tosca C4-5 113,2 4 limo arcilloso 1,51 A - 4 (7) 30 13 C4-6 103,6 4,5 1,16 A - 4 (8) areno C4-7 94,0 3,5 limo arcilloso 1,29 A - 4 (4)

Tabla 52: Tipos de suelo RP N°4

Se destacan los suelos A4 Y a los fines de caracterizar la resistencia de los mismos se eligió la muestra C4-2.

De la comparación de entre densidad in situ y densidad máxima de Proctor, se destaca gran dispersión entre los valores obtenidos. Por tal motivo, y con criterio conservador, se adoptó para el diseño un valor de CBR de 5%.

Ruta Provincial Nº 10

La tabla adjunta muestra los tipos de suelo característicos de la ruta.

Tabla 53: Tipos de suelo RP N°10

	<u>.</u>																
							RP N	l°10									
	UBICACION		ESTRU	ICTURA			DENCINA D	PRO	PROCTOR				CBR				
N° CALICATA	RP N°10	CARPETA	BASE	SUB BASE	SUBRASANTE			DENSIDAD MAXIMA	HUMEDAD OPTIMA	IN-SITU MAX	1	2	2	5	56		
	[Km]	[cm]	[cm]	[cm]		[gr/cm³]		[Kg/m³]	%	%	D	CBR	D	CBR	D	CBR	
C10-1	43,5	2,5	30 tosca	8 arena limosa	arena limosa	1,57	A - 4 (1)	1,78	16,2	88%	1508	3,4	1636	7,6	1774	24,9	
C10-2	34,4	3,5	30 tosca	46 arena limosa	rocoso												
C10-3	25,4	4	29 tosca	60 arena limosa	arena limosa	1,38	A - 2 - 4 (0)	1,565	15	88%	1466	5,1	1532	11	1558,5	20,8	
C10-4	16,4	3	33 tosca	40 arena limosa	arena limosa	1,62	A - 2 - 4 (0)	1,77	14,2	92%	1523	3,6	1640	14,6	1734	32,4	

Se destacan los suelos A4 y A2-4 y a los fines de caracterizar la resistencia de los mismos se adoptaron ensayos de compactación y valor soporto de muestras

efectuadas en el resto de las rutas en estudio, dado que la caracterización de los suelos define los rangos de resistencia.

De la comparación de entre densidad in situ y densidad máxima de Proctor, se destaca el bajo grado de compactación existente en subrasante, alcanzando en uno de los casos el 92% de la densidad máxima. Por tal motivo se adoptó para el diseño un valor de CBR entre progresiva 30 a 50 de 4%, y entre progresivas 10 a 30 de 3%, quedando definido así dos secciones en estudio.

Ruta Provincial Nº 18

La tabla adjunta muestra los tipos de suelo característicos de la ruta.

RP N°18 IN-SITU MAX RP N°18 CARPETA BASE SUELO SECO 12 25 SUB BASE CALICATA OPTIMA [Km] [cm] [cm] 29 [cm] [gr/cm³] CBR C18-1 15.2 A - 4 (0) 1.818 82% 1680 8,9 1800 14 1839 18,7 75,0 3,5 1.49 66,0 1,42 A - 4 (0) C18-3 A - 4 (0) na lin C18-4 48.0 limo arcillos A - 3 (0) 6,5 A - 4 (2) C18-5 39,0 limo arcillos 1,84 13 1700 1811 15,6 1878 20,3 10 C18-6 29,8 nivel freático

Tabla 54: Tipos de suelo RP N°18

Se destacan los suelos A4 y a los fines de caracterizar la resistencia de los mismos se adoptaron ensayos de compactación y valor soporte de muestras C18-1 y C18-5.

De la comparación de entre densidad in situ y densidad máxima de Proctor, se destaca el bajo grado de compactación existente en subrasante, alcanzando en uno de los casos el 82% de la densidad máxima. Por tal motivo se adoptó para el diseño un valor de CBR de 3%.

Se analizaron dos secciones debido a la diferencia de estructura determinada en las calicatas. De esta manera se analiza la sección entre progresiva 25 a 60 que posee 7 cm de concreto asfáltico, y la sección entre progresivas 60 a 80 con 4 cm de concreto asfáltico.

Ruta Provincial Nº 20

La tabla adjunta muestra los tipos de suelo característicos de de la ruta.

Tabla 55: Tipos de suelo RP N°20

	RP N°20																
	UBICACION		ESTRU	CTURA		DENSIDAD		PRO	CTOR	% DENSIDAD			CI	BR			
N° CALICATA	RP N°20	CARPETA	BASE	SUB BASE	SUBRASANTE	TE SUELO SECO CLASIFICACIO	SUELO SECO CLASIFICACION DI		DENSIDAD HUMEDAD MAXIMA OPTIMA		IN-SITU MAX	12		25		5	6
	[Km]	[cm]	[cm]	[cm]		[gr/cm³]		[Kg/m³]	%	%	D	CBR	D	CBR	D	CBR	
C20-1	199,4	5,5	30 tosca	45 arena limosa	limo arcilloso	1,59	A - 4 (1)	1,78	16,2	89%	1508	3,4	1636	7,6	1774	24,9	
C20-2	208,3	5	37 tosca	12 arena limosa	arena limosa	1,42	A - 4 (4)	1,705	19,8	83%							
C20-3	214,7	4,5	29 tosca	19 arena limosa	arena limosa	1,54	A - 2- 4 (0)										
C20-4	224,8	4,5	39 tosca	40 arena limosa	arena limosa	1,57	A - 2- 4 (0)	1,565	15	100%	1466	5,1	1532	11	1559	20,8	
C20-5	234,0	5	33 tosca	12 arena limosa	arena	1,57	A - 2- 4 (0)										
C20-6	242,5	5	32 tosca	50 arena fina	arena	1,56	A - 2- 4 (0)										

Se destacan los suelos A4 y A2-4 a los fines de caracterizar la resistencia de los mismos se adoptaron ensayos de compactación y valor soporte de muestras C20-1 y C20-4.

De la comparación de entre densidad in situ y densidad máxima de Proctor, se destacan dos secciones, una entre progresivas 194 a 220 con densidad in-situ de 89%, a la cual le asignamos un Valor Soporte de diseño de 5%; y la restante con densidad del 100%, que asignamos un Valor Soporte de diseño de 11%.

Ruta Provincial Nº 24

La tabla adjunta muestra los tipos de suelo característicos de de la ruta.

Tabla 56: Tipos de suelo RP N°24

	RP N°24															
	UBICACION		ESTRU	CTURA		DENSIDAD		PROCTOR		% DENSIDAD			CBR			
N°	RP N°24	CARPETA	BASE	SUB BASE	SUBRASANTE	-	LO SECO CLASIFICACION	DENSIDAD	HUMEDAD	IN-SITU	- 1	2	,	ī	-	
CALICATA	KP N 24	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO LLASIFICACION	MAXIMA	OPTIMA	MAX	12		25		3	56	
	[Km]	(m) [cm] [cm] [gr/cm³]		[Kg/m³]	%	%	D	CBR	D	CBR	D	CBR				
C24-1	7.7	-	27	60	limo arcilloso	1,57	A - 4 (4)	1,859	14.6	84%	1689	9.3	1806	14	1870	22.4
C24-1	7,7	5	tosca	arena limosa	ilmo arcilloso	1,57	A - 4 (4)	1,859	14,6	84%	1689	9,3	1806	14	18/0	23,4
C24.2	3.5		30	56	lima aranasa	1.52	0 4 (4)	1.05	14.3	82%	1715	0.6	1822	11	1870	17.1
C24-2	C24-2 2,5	5,5	tosca	limo arenoso		1,52	A - 4 (4)	1,85	14,2	62%	1/15	8,6	1022	11	10/0	1/,1

Se destacan los suelos A4 y a los fines de caracterizar la resistencia de los mismos se adoptaron ensayos de compactación y valor soporte de muestras C24-1 y C24-2.

De la comparación de entre densidad in situ y densidad máxima de Proctor, se destaca el bajo grado de compactación existente en subrasante, no superándose el 85% de la densidad máxima. Por tal motivo se adoptó para el diseño un valor de CBR de 3%.

En todos los casos se desprecio el aporte estructural de la subbase por la similitud de características con la subrante.

Las planillas de los ensayos respectivos se pueden observar en el Anexo N $^\circ$ IV.

4.4 Determinación de la vida útil de los tramos

A los efectos de la modelación de las secciones en estudio, se adoptaron las estructuras mostradas en Tablas N°2 (RP N°i):

4.4.1.1 Ruta Provincial N°1 - Tramo RN N° 35 - Salinas La Colorada:

Tabla 57: (RP N°1): Estructura adoptada en la modelación.

RP N°1			
	LONG.	ESTRUCTURA	
TRAMO		CARPETA	BASE
	[Km]	[cm]	[cm]
Km 361,1-388	26.9	3	30
KIII 301, 1-300	20,9		tosca
Km 388-394,4	6.4	4.5	45
KIII 300-394,4	0,4	4,5	tosca

4.4.1.2 Ruta Provincial N°4 - Tramo RN N° 35 - RP Nº9 y Tramo RP Nº9-RP Nº11:

Tabla 58: (RP N°4): Estructura adoptada en la modelación.

RP N°4			
	LONG. [Km]	ESTRUCTURA	
TRAMO		CARPETA	BASE
		[cm]	[cm]
RNN°35-RPN°11	DDN°44 62		25
KININ 33-KPIN II	62	4	tosca

4.4.1.3 Ruta Provincial N°10 - Tramo RP N°1 - RP №7:

Tabla 59: (RP N°10): Estructura adoptada en la modelación.

	-		
RP N°10			
	1.0010	ESTRUCTURA	
TRAMO	LONG.	CARPETA	BASE
	[Km]	[cm]	[cm]
Km 10,2-30,0	19.8	3	30
KIII 10,2-30,0	19,0	3	tosca
Km 30,0-50,2	20,2	3	30
KIII 30,0-30,2	20,2	3	tosca

4.4.1.4 *Ruta Provincial N°18 - Tramo RP N° 1 - RP Nº35:*

Tabla 60: (RP N°18): Estructura adoptada en la modelación.

`	,		
RP N°18		<u>. </u>	
	LONG.	ESTRUCTURA	
TRAMO	[Km]	CARPETA	BASE
		[cm]	[cm]
Km 25,1-60,0	34,9	7	30
KIII 25, 1-00,0		1	tosca
Km 60,0-80,7	20,7	4	30
KIII 00,0-00,7		4	tosca

4.4.1.5 Ruta Provincial N°20 - Tramo RP N°17 - RN N°143:

Tabla 61: (RP N°20): Estructura adoptada en la modelación.

RP N°20			
	LONG.	ESTRUCTURA	
TRAMO		CARPETA	BASE
	[Km]	[cm]	[cm]
Km 194,4-220	25,6	5	30
KIII 194,4-220			tosca
Km 220-249,5	29,5	5	32
KIII 220-249,5] 3	tosca

4.4.1.6 Ruta Provincial N°24 - Tramo MERIDIANO V - Guatraché:

Tabla 62: (RP N°24): Estructura adoptada en la modelación.

		=	
RP N°24			
	LONG. [Km]	ESTRUCTURA	
TRAMO		CARPETA	BASE
		[cm]	[cm]
Meridiano V- Guatraché	11,8	5	30 tosca

4.4.2 Número Estructural Efectivo

Para la determinación del Número Estructural Efectivo, se aplica la expresión:

$$SN_{ef} = \sum a'_{i}. d_{i}$$

Donde:

a´i: Coeficiente de aporte estructural de capa `i`, minimizado por el estado superficial de la calzada, según tabla adjunta del método AASTHO – Refuerzo de concreto asfáltico sobre pavimentos de concreto asfáltico.

d_i: Espesor de capa 'i'

En función del estado de deterioro de la calzada y aplicando los coeficientes sugeridos por el Método AASTHO, se obtuvieron los coeficientes de aportes que se muestran en las Tablas N°4 (RPN°i).

4.4.2.1 Ruta Provincial N°1 - Tramo RN N° 35 - Salinas La Colorada:

Tabla 63: (RP N°1): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

RP N°1				
ESTRUCTURA				
TRAMO	CARPETA	Coef. Aporte	BASE	Coef. Aporte
	[cm]	[1/cm]	[cm]	[1/cm]
Km 361,1-388	3	0,100	30	0.047
KIII 301, 1-300	3	0,100	tosca	0,047
Km 388-394,4	4.5	0,100	45	0.047
KIII 300-394,4	4,5	0,100	tosca	0,047

4.4.2.2 Ruta Provincial N°4 - Tramo RN N° 35 a RP №9, y Tramo RP №9-RP №11:

Tabla 64: (RP N°4): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

RP N°4				
	ESTRUCTU	JRA		
TRAMO	CARPETA	Coef. Aporte	BASE	Coef. Aporte
	[cm]	[1/cm]	[cm]	[1/cm]
RNN°35-RPN°11	4	0,100	25 tosca	0,047

4.4.2.3 Ruta Provincial N°10 - Tramo RP N°1 - RP Nº7:

Tabla Nº 4 (RP N°10): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

RP N°10					
ESTRUCTURA					
TRAMO	CARPETA	Coef. Aporte	BASE	Coef. Aporte	
	[cm]	[1/cm]	[cm]	[1/cm]	
Km 10,2-30,0	3	0,100	30	0.047	
1411 10,2-30,0	3	0,100	tosca	0,047	
Km 30,0-50,2	3	0,100	30	0.047	
1311 30,0-30,2	3	0,100	tosca	0,047	

4.4.2.4 Ruta Provincial N°18 - Tramo RP N°1 - RP Nº35:

Tabla 65: (RP N°18): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

				1	
RP N°18					
	ESTRUCTU	ESTRUCTURA			
TRAMO	CARPETA	Coef. Aporte	BASE	Coef. Aporte	
	[cm]	[1/cm]	[cm]	[1/cm]	
Km 25,1-60,0	7	0,110	30	0.047	
KIII 25, 1-00,0	′	0,110	tosca	0,047	
Km 60,0-80,7	4	0,100	30	0,047	
Kill 60,0-60,1	tosca	0,047			

4.4.2.5 Ruta Provincial N°20 - Tramo RP N°17-RN N°143:

Tabla 66: (RP N°20): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

RP N°20				
ESTRUCTURA				
TRAMO	CARPETA	Coef. Aporte	BASE	Coef. Aporte
	[cm]	[1/cm]	[cm]	[1/cm]
Km 194,4-220	5	0,110	30	0.047
KIII 194,4-220	3	0,110	tosca	0,047
Km 220-249,5	5	0,100	32	0.047
1111 220-249,5	3	0,100	tosca	0,047

4.4.2.6 Ruta Provincial N°24 - Tramo MERIDIANO V - Guatraché:

Tabla 67: (RP N°24): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

RP N°24						
	ESTRUCTU	JRA				
TRAMO	CARPETA	Coef. Aporte	BASE	Coef. Aporte		
	[cm]	[1/cm]	[cm]	[1/cm]		
MERIDIANO V-	5	0,100	30 tosca	0,047		
Guatrache						

Con las estructuras adoptadas para la modelación y los coeficientes estructurales definidos, se obtienen los Números Estructurales Efectivos de cada sección.

Los Números Estructurales resultantes son:

Tabla 68: Número Estructural adoptado, por ruta y por tramo.

	TRAMO	NÚMERO ESTRUCTURAL SN
RPNº 1	Km 361,1-388	1,710
	Km 388-394,4	2,565
RPNº 4	RNN°35-RPN°11	1,575
RPNº 10	Km 10,2-30,0	1,710
	Km 30,0-50,2	1,710
RPNº 18	Km 25,1-60,0	2,180
	Km 60,0-80,7	1,810
RPN° 20	Km 194,4-220	1,960
	Km 220-249,5	2,004
RPNº 24	Meridiano V - Guatrache	1,910

4.4.3 Determinación de la Vida Útil

Para la determinación de la vida útil de la rehabilitación propuesta, se sigue el procedimiento establecido en el apartado 4.2.1.1 Determinación de la Vida Útil.

Los resultados obtenidos se muestran a continuación en las Tablas siguientes.

4.4.3.1 Ruta Provincial N°1 - Tramo RN N° 35 - Salinas La Colorada:

Tabla 69: (RP N°1): Vida Útil Estimada.

RP N°1						
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario	
Km 361,1-388	3	4500	6000	Agotado	-	
Km 388-394,4	3,5	5250	82000	< 1 año	-	

4.4.3.2 Ruta Provincial N°4 - Tramo RN N° 35 a RP Nº9 y Tramo RP Nº9-RPNº11:

Tabla 70: (RP N°4): Vida Útil Estimada.

RP N°4						
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario	
RNN°35-RPN°11	5	7500	11000	Agotado	-	

4.4.3.3 Ruta Provincial N°10 - Tramo RP N°1 - RP №7:

Tabla 71: (RP N°10): Vida Útil Estimada.

RP N°10						
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario	
Km 10,2-30,0	3	4500	6000	Agotado	-	
Km 30,0-50,2	4	6000	10000	Agotado	-	

4.4.3.4 Ruta Provincial N°18 - Tramo RP N° 1 - RN №35:

Tabla 72: (RP N°18): Vida Útil Estimada.

RP N°18						
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario	
Km 25,1-60,0	3	4500	21000	Agotado	-	
Km 60,0-80,7	3	4500	7000	Agotado	-	

4.4.3.5 Ruta Provincial N°20 - Tramo RP N°17-RN N°143:

Tabla 73: (RP N°20): Vida Útil Estimada.

RP N°20						
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario	
Km 194,4-220	5	7500	38000	Agotado	-	
Km 220-249,5	11	10000	85000	Agotado	-	

4.4.3.6 Ruta Provincial N°24 - Tramo MERIDIANO V-y Guatraché:

Tabla 74: (RP N°24): Vida Útil Estimada.

RP N°24					
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario
MERIDIANO V - Guatrache	3	4500	10000	Agotado	-

Se concluye que, conforme a la modelación y análisis realizado, las condiciones de serviciabilidad, para cada ruta y tramo analizado, se encuentran agotadas.

4.4.4 Rehabilitación

En base a los resultados obtenidos del análisis anterior, se propone aplicar las siguientes rehabilitaciones en calzadas:

4.4.4.1 Ruta Provincial N°1 - Tramo RN N° 35 - Salinas La Colorada:

Tramo Km 361,1-388,0: reclamado de 13 cm con incorporación de 20 cm de Tosca (capa nueva de Tosca 30 cm) y Concreto Asfáltico de 7 cm.

Tramo Km 388,0-394,4: reclamado de 15 cm con incorporación de 20 cm de Tosca (capa nueva de Tosca 35 cm) y Concreto Asfáltico de 3 cm.

La tabla siguiente (RP Nº1) resume la solución propuesta.

Tabla 75: (RP N°1): Rehabilitación propuesta.

RP N°1						
TRAMO	LONG.	ESTRUCTURA				
		CARPETA	BASE NUEVA	BASE		
	[Km]	[cm]	[cm]	[cm]		
Km 361,1-388 26,9	26.9	7	30	20		
KIII 30 1, 1-300	20,9	1	tosca	tosca		
Km 388-394,4	6.4	3	35	35		
	0,4	٦	tosca	tosca		

4.4.4.2 Ruta Provincial N°4 - Tramo RN N° 35 a RP №11:

Tramo RNN°35-RPN°9: reclamado de 10 cm con incorporación de 15 cm de Tosca (capa nueva de Tosca 25 cm) y Concreto Asfáltico de 5 cm.

Tramo RPN°9-RPN°11: reclamado de 10 cm con incorporación de 15 cm de Tosca (capa nueva de Tosca 25 cm) y Concreto Asfáltico de 3 cm.

La tabla siguiente (RP N°4) resume la solución propuesta.

Tabla 76: (RP N°4): Rehabilitación propuesta.

	•	,			
RP N°4					
TRAMO	LONG	ESTRUCTU	ESTRUCTURA		
	LONG.	CARPETA	BASE NUEVA	BASE	
	[Km]	[cm]	[cm]	[cm]	
RNN°35-RPN°9	21.7	E	25	20	
	21,7	5	tosca	tosca	
RPN°9-RPN°11	40.2	2	25	20	
	40,3	3	tosca	tosca	

4.4.4.3 Ruta Provincial N°10 - Tramo RP N° 1- RP Nº7:

Tramo Km 10,2-30,0: reclamado de 13 cm con incorporación de 20 cm de Tosca (capa nueva de Tosca 30 cm) y Concreto Asfáltico de 5 cm.

Tramo Km 30,0-50,2: reclamado de 13 cm con incorporación de 20 cm de Tosca (capa nueva de Tosca 30 cm) y Concreto Asfáltico de 3 cm.

La tabla siguiente (RP N°10) resume la solución propuesta.

Tabla 77: (RP N°10): Rehabilitación propuesta.

RP N°10						
TRAMO	LONG	ESTRUCTURA				
	LONG.	CARPETA	BASE NUEVA	BASE		
	[Km]	[cm]	[cm]	[cm]		
K= 10.2.20.0 10.0	19.8	5	30	20		
Km 10,2-30,0	19,0		tosca	tosca		
Km 30,0-50,2	20,2	3	30	20		
	20,2	٦	tosca	tosca		

4.4.4.4 Ruta Provincial N°18 - Tramo RP N° 1 - RN Nº35:

Tramo Km 25,1-60,0: fresado de 7 cm con incorporación de 30 cm de Tosca y Concreto Asfáltico de 6 cm.

Tramo Km 60,0-80,7: reclamado de 14 cm con incorporación de 20 cm de Tosca (capa nueva de Tosca 30 cm) y Concreto Asfáltico de 9 cm.

La tabla siguiente (RP N°18) resume la solución propuesta.

Tabla 78: (RP N°18): Rehabilitación propuesta.

RP N°18						
	LONG.	ESTRUCTURA				
TRAMO	[Km]	CARPETA	BASE NUEVA	BASE		
		[cm]	[cm]	[cm]		
Km 25,1-60,0 34,9	34.9	6	30	30		
KIII 25, 1-00,0	34,9		Tosca	tosca		
Km 60,0-80,7 20,7	20.7	9	30	20		
	20,7		tosca	tosca		

4.4.4.5 Ruta Provincial N°20 - Tramo RP N°17 - RN N°143:

Tramo Km 194,4-220,0: fresado de 5 cm con incorporación de 30 cm de Tosca y Concreto Asfáltico de 5 cm.

Tramo Km 220,0-249,5: fresado de 5 cm con incorporación de 25 cm de Tosca y Concreto Asfáltico de 5 cm.

La tabla siguiente (RP N°20) resume la solución propuesta.

Tabla 79: (RP N°20): Rehabilitación propuesta.

RP N°20							
TRAMO	LONG.	ESTRUCTU	ESTRUCTURA				
	[Km]	CARPETA	BASE NUEVA	BASE			
	[KIII]	[cm]	[cm]	[cm]			
Km 194,4-220	25.6	5	30	30			
KIII 194,4-220	25,0		tosca	tosca			
Km 220-249,5 29,5	20.5	5	25	32			
	29,5	3	tosca	tosca			

4.4.4.6 Ruta Provincial N°24 - Tramo MERIDIANO V - Guatraché:

Tramo MERIDIANO V-Guatrache: fresado de 5 cm con incorporación de 30 cm de Tosca y Concreto Asfáltico de 5 cm.

La tabla siguiente (RP N°24) resume la solución propuesta.

Tabla 80: (RP N°24): Rehabilitación propuesta.

RP N°24						
	LONG. [Km]	ESTRUCTU	ESTRUCTURA			
TRAMO		CARPETA	BASE NUEVA	BASE		
		[cm]	[cm]	[cm]		
MERIDIANO V -	11,8	5	30 tosca	30 tosca		
Guatrache						

A continuación se presentan los resultados obtenidos de Vida Útil con la Rehabilitación propuesta, estimados en base a las metodologías ya presentadas en los apartados 4 y 5:

4.4.4.7 Ruta Provincial N°1 - Tramo RN N° 35 - Salinas La Colorada:

Tabla 81: (RP N°1): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

RP N°1							
	ESTRUCTU	JRA					
TRAMO	CARPETA	Coef. Aporte	BASE NUEVA	Coef. Aporte	BASE	Coef. Aporte	
[cı	[cm]	[1/cm]	[cm]	[1/cm]	[cm]	[1/cm]	
Km 361,1-388	7	0,170	30	0,060	20	0,047	
KIII 30 I, I-300 /	1		tosca	0,000	tosca		
Km 388-394,4	3	0.170	35	0,060	35	0.047	
KIII 388-394,4	3 0,170	tosca	0,000	tosca	0,047		

Tabla 82: (RP N°1): Número Estructural adoptado.

RP N°1	
	NÚMERO
TRAMO	ESTRUCTURAL
	SN
Km 361,1-388	3,930
Km 388-394,4	4,255

Tabla 83: (RP N°1): Vida Útil Estimada.

RP N°1					
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario
Km 361,1-388	3	4500	760000	5 años	2021
Km 388-394,4	3,5	5250	1850000	13 años	2029

4.4.4.8 Ruta Provincial N°4 - Tramo RN N° 35 - RP Nº9 y Tramo RP Nº9-RP Nº11:

Tabla 84: (RP N°4): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

RP N°4							
	ESTRUCTU	JRA					
TRAMO	CARPETA	Coef. Aporte	BASE NUEVA	Coef. Aporte	BASE	Coef. Aporte	
	[cm]	[1/cm]	[cm]	[1/cm]	[cm]	[1/cm]	
RNN°35-RPN°9	5 0,170	0.170	25	0.060	20	0,047	
RIVIN 35-RPIN 9		0,170	tosca	0,000	tosca		
RPN°9-RPN°11	3	0,170	25	0.060	20	0.047	
RPN 9-RPN 11	3	0,170	tosca	0,000	tosca	0,047	

Tabla 85: (RP N°4): Número Estructural adoptado.

RP N°4	
	NÚMERO
TRAMO	ESTRUCTURAL
	SN
RNN°35-RPN°9	3,290
RPN°9-RPN°11	2,950

Tabla 86: (RP N°4): Vida Útil Estimada.

RP N°4						
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario	
RNN°35-RPN°9	5	7500	850000	13 años	2029	
RPN°9-RPN°11	5	7500	400000	13 años	2029	

4.4.4.9 Ruta Provincial N°10 - Tramo RP N° 1 - RP Nº7:

Tabla 87: (RP N°10): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

		•					
RP N°10							
	ESTRUCTU	JRA					
TRAMO	CARPETA	Coef. Aporte	BASE NUEVA	Coef. Aporte	BASE	Coef. Aporte	
	[cm]	[1/cm]	[cm]	[1/cm]	[cm]	[1/cm]	
Km 10,2-30,0	5	0,170	30	0,060	20	0,047	
KIII 10,2-30,0	KIII 10,2-30,0 5		tosca		tosca		
Km 30,0-50,2	3	0,170	30	0.060	20	0.047	
KIII 30,0-30,2	3	0,170	tosca	0,000	tosca	0,047	

Tabla 88: (RP N°10): Número Estructural adoptado.

RP N°10	
	NÚMERO
TRAMO	ESTRUCTURAL
	SN
Km 10,2-30,0	3,590
Km 30,0-50,2	3,250

Tabla 89: (RP N°10): Vida Útil Estimada.

RP N°10						
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario	
Km 10,2-30,0	3	4500	460000	8 años	2024	
Km 30,0-50,2	4	6000	460000	8 años	2024	

4.4.4.10Ruta Provincial N°18 - Tramo RP N° 1 - RN №35:

Tabla 90: (RP N°18): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

		μ				
RP N°18						
	ESTRUCTU	JRA				
TRAMO	CARPETA	Coef. Aporte	BASE NUEVA	Coef. Aporte	BASE	Coef. Aporte
	[cm]	[1/cm]	[cm]	[1/cm]	[cm]	[1/cm]
Km 25,1-60,0	6	0,170	30 Tosca	0,060	30 tosca	0,047
Km 60,0-80,7	9	0,170	30 tosca	0,060	20 tosca	0,047

Tabla 91: (RP N°18): Número Estructural adoptado.

RP N°18	
TDAMO	NÚMERO
TRAMO	ESTRUCTURAL SN
Km 25,1-60,0	4,230
Km 60,0-80,7	4,270

Tabla 92: (RP N°18): Vida Útil Estimada.

RP N°18					
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario
Km 25,1-60,0	3	4500	1230000	6 años	2022
Km 60,0-80,7	3	4500	1300000	6 años	2022

4.4.4.11Ruta Provincial N°20 - Tramo RP N°17 - RN N°143:

Tabla 93: Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

RP N°20						
	ESTRUCTURA					
TRAMO	CARPETA	Coef. Aporte	BASE NUEVA	Coef. Aporte	BASE	Coef. Aporte
	[cm]	[1/cm]	[cm]	[1/cm]	[cm]	[1/cm]
Km 194,4-220 5	5	0,170	30	0,060	30	0,047
KIII 194,4-220	3	0,170	tosca	0,000	tosca	0,047
Km 220-249,5	5	0,170	25	0.060	32	0.047
1411 220-249,5		0,170	tosca	0,000	tosca	0,047

Tabla 94: (RP N°20): Número Estructural adoptado.

RP N°20	
	NÚMERO
TRAMO	ESTRUCTURAL
	SN
Km 194,4-220	4,060
Km 220-249,5	3,854

Tabla 95: (RP N°20): Vida Útil Estimada.

RP N°20						
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario	
Km 194,4-220	5	7500	3100000	10 años	2026	
Km 220-249,5	11	10000	4500000	13 años	2029	

4.4.4.12Ruta Provincial N°24 - Tramo MERIDIANO V - Guatraché:

Tabla 96: (RP N°24): Valores sugeridos de coeficiente estructural (cm⁻¹) para capas de pavimentos deteriorados.

RP N°24						
	ESTRUCTU	JRA				
TRAMO	CARPETA	Coef. Aporte	BASE NUEVA	Coef. Aporte	BASE	Coef. Aporte
	[cm]	[1/cm]	[cm]	[1/cm]	[cm]	[1/cm]
MERIDIANO V- Guatrache	5	0,170	30 tosca	0,060	30 tosca	0,047

Tabla 97: (RP N°24): Número Estructural adoptado.

RP N°24	
TRAMO	NÚMERO ESTRUCTURAL SN
Meridiano V Guatrache	4,060

Tabla 98: (RP N°24): Vida Útil Estimada.

RP N°24					
TRAMO	CBR [%]	MR [psi]	Ejes Equivalentes	Años de Vida Útil	Año Calendario
MERIDIANO V- Guatrache	3	4500	1000000	11 años	2027

Se concluye que, conforme a las rehabilitaciones propuestas en los tramos de ruta analizados y manteniéndose las condiciones de modelación realizadas, se mantendrán las condiciones de serviciabilidad por:

Ruta Provincial N°1 - Tramo RN N° 35 - Salinas La Colorada:

Tramo Km 361,1-388,0; 5 años.

Tramo Km 388,0-394,4; 13 años.

Ruta Provincial N°4 - Tramo RN N° 35 - RP N°9 Y Tramo RP N°9-RP N°11:

Tramo RN N°35-RP N°11; 13 años.

Ruta Provincial N°10 - Tramo RP N° 1 - RP N°7:

Tramo RP N°1-RP N°7; 8 años.

Ruta Provincial N°18 - Tramo RP N° 1 - RN N°35:

Tramo RP N°1-RN N°35; 6 años.

Ruta Provincial N°20 - Tramo RP N°17 - RN N°143:

Tramo Km 194,4-220,0; 10 años.

Tramo Km 220,0-249,5; 13 años.

Ruta Provincial N°24 - Tramo MERIDIANO V - Guatraché:

Tramo Meridiano V - Guatraché, 11 años.

5 CONCLUSION Y PRIORIZACIÓN DE LAS OBAS

De los estudios efectuados se desprende:

- Los suelos típicos representativos de las rutas estudiadas son A4 y A2-4, característicos de limos y limos arenosos

Todas las estructuras analizadas, se encuentran al límite de su vida útil.

- Las deformaciones características son las fisuras tipo 8 a 10 y ahuellamiento superior a 15 mm.
 - La demarcación horizontal de los tramos en análisis es deficiente.
- Se han propuesto rehabilitaciones de los tramos para extender la serviciabilidad de las mismas.
- Las rehabilitaciones constan en general de un fresado y reciclado de la capa superior, con el objeto de restituir el gálibo (deformación transversal), el reciclado de éste material con la incorporación de tosca virgen (material empleado por la Dirección Provincial de Vialidad en las estructuras viales) y una carpeta superior de concreto asfáltico.

Dado el grado de deterioro existente en los tramos, donde todos se encuentran al límite de su vida útil, es que se propone priorizar la obras de rehabilitación en función del tránsito que emplea cada una de ellas. De esta manera se mejora la seguridad vial, y se disminuyen los costos de operación de los vehículos, actuando en los tramos que mayor incidencia poseen en el tránsito de la red vial.

Tabla 99: Priorización de obras

RUTA	TRAMO	T.M.D.A (Tránsito Medio	Prioridad de Ejecución
		Diario Anual)	de Obra
RP Nº 18	RP N° 1 - RN N° 35	802	1°
RP N° 20	RP N° 15 - RP N° 17	672	2°
RP N° 24	Meridiano V - Guatrache	655	3°
RP Nº 1	RP N° 24 - RN N° 35	563	4°
RP N° 4	Caleufu - RP Nº 11	454	5°
RP N° 10	RP Nº 1 - Colonia Barón	283	6°
RP Nº 4	RP Nº 11 - Limite con San Luis	196	7°

De esta forma las rehabilitaciones y su cronología en el tiempo sería:

Prioridad 1: RP Nº 18:

- Entre progresiva 25,1 a 60,0, la rehabilitación propuesta incluye un fresado de 7 cm, la construcción de una nueva base de tosca de 30 cm y una carpeta de concreto asfáltico de 6 cm.
- Entre progresiva 25,1 a 60,0, la rehabilitación propuesta incluye un reclamado de 14 cm, la construcción de una nueva base de tosca de 30 cm con la incorporación del reclamado y 20 cm de tosca virgen, y una carpeta de concreto asfáltico de 9 cm

rabia re	o. Nemabili	acion prop	acsia. Nata i ic	villelal iv 10
RP N°18				
		ESTRUCTU	JRA	
TRAMO	LONG. [Km]	CARPETA	BASE NUEVA	BASE EXISTENTE
		[cm]	[cm]	[cm]
Km 25,1-60,0	34,9	6	30 Tosca	30 tosca
Km 60,0-80,7	20,7	9	30 tosca	20 tosca

Tabla 100: Rehabilitación propuesta. Ruta Provincial Nº 18

Prioridad 2: RP Nº 20

- Entre progresiva 194,4 a 220,0 la rehabilitación propuesta incluye un fresado de 5 cm, la construcción de una nueva base de tosca de 30 cm y una carpeta de concreto asfáltico de 5 cm.
- Entre progresiva 220,0 a 249,5, la rehabilitación propuesta incluye un fresado de 5 cm, la construcción de una nueva base de tosca de 25 cm y una carpeta de concreto asfáltico de 5 cm.

Tabla 101: Rehabilitación propuesta. Ruta Provincial Nº 20

RP N°20					
		ESTRUCTURA			
TRAMO	LONG. [Km]	CARPETA	BASE NUEVA	BASE	
		[cm]	[cm]	[cm]	
Km 194,4-220	25,6	5	30 tosca	30 tosca	
Km 220-249,5	29,5	5	25 tosca	32 tosca	

Prioridad 3: RP Nº 24

- La rehabilitación propuesta incluye un fresado de 5 cm, la construcción de una nueva base de tosca de 30 cm y una carpeta de concreto asfáltico de 5 cm.

Tabla 102: Rehabilitación propuesta. Ruta Provincial Nº 24

RP N°24					
		ESTRUCTURA			
TRAMO	LONG. [Km]	CARPETA	BASE NUEVA	BASE	
	[[]	[cm]	[cm]	[cm]	
Meridiano V Guatrache	11,8	5	30 tosca	30 tosca	

Prioridad 4: RP Nº 1

- Entre progresiva 361,1 a 388,0 la rehabilitación propuesta incluye un reclamado de 13 cm, la construcción de una nueva base de tosca de 30 cm (20 cm de material virgen) y una carpeta de concreto asfáltico de 7 cm.
- Entre progresiva 388,0 a 394,4, la rehabilitación propuesta incluye un reclamado de 15 cm, la construcción de una nueva base de tosca de 35 cm (20 cm de material virgen) y una carpeta de concreto asfáltico de 3 cm.

Tabla 103: Rehabilitación propuesta. Ruta Provincial Nº 1

RP N°1				
		ESTRUCTU	IRA	
TRAMO	LONG. [Km]	CARPETA	BASE NUEVA	BASE
	[]	[cm]	[cm]	[cm]
Km 361,1-388	26,9	7	30 tosca	20 tosca
Km 388-394,4	6,4	3	35 tosca	35 tosca

Prioridad 5: RP Nº 4

- La rehabilitación propuesta incluye un reclamado de 10 cm, la construcción de una nueva base de tosca de 25 cm (15 cm de material virgen) y una carpeta de concreto asfáltico de 5 cm.

Tabla 104: Rehabilitación propuesta. Ruta Provincial Nº 4

RP N°4				
		ESTRUCTU	IRA	
TRAMO	LONG. [Km]	CARPETA	BASE NUEVA	BASE
	[]	[cm]	[cm]	[cm]
RNN°35-RPN°9	21,7	5	25 tosca	20 tosca

Prioridad 6: RP Nº 10

- Entre progresiva 10,2 a 30,0 la rehabilitación propuesta incluye un reclamado de 13 cm, la construcción de una nueva base de tosca de 30 cm (20 cm de material virgen) y una carpeta de concreto asfáltico de 5 cm.
- Entre progresiva 30,0 a 50,2, la rehabilitación propuesta incluye un reclamado de 13 cm, la construcción de una nueva base de tosca de 30 cm (20 cm de material virgen) y una carpeta de concreto asfáltico de 3 cm.

Tabla 105: Rehabilitación propuesta. Ruta Provincial Nº 10

RP N°10				
		ESTRUCTU	IRA	
TRAMO	LONG. [Km]	CARPETA	BASE NUEVA	BASE
	[[]	[cm]	[cm]	[cm]
Km 10,2-30,0	19,8	5	30 tosca	20 tosca
Km 30,0-50,2	20,2	3	30 tosca	20 tosca

Prioridad 7: RP Nº 4

- La rehabilitación propuesta incluye un reclamado de 10 cm, la construcción de una nueva base de tosca de 25 cm (15 cm de material virgen) y una carpeta de concreto asfáltico de 3 cm.

Tabla 106: Rehabilitación propuesta. Ruta Provincial Nº 4

RP N°4				
		ESTRUCTU	IRA	
TRAMO	LONG. [Km]	CARPETA	BASE NUEVA	BASE
	[]	[cm]	[cm]	[cm]
RPN°9-RPN°11	40,3	3	25 tosca	20 tosca

6 BIBLIOGRAFÍA

Guía AASHTO® para el Diseño de Estructuras de Pavimentos 1993. Publicado por la American Association of State Highway and Transportation Officials.

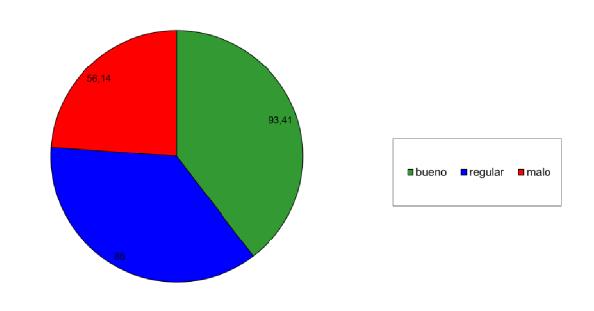
Sinopsis Metodológica de Evaluación de Estado de los Pavimentos, Publicado por Dirección Nacional de Vialidad, Gerencia de Planeamiento, Investigación y Control. Subgerencia de Planeamiento y Programación Vial. División Relevamiento.

7 ANEXO I

INFORME DE INDICE DE ESTADO DE RUTAS, AÑO 2015- LA PAMPA

		Direccion	Provincial De V	alidad									
\wedge			ento e inf vial										
//D\\			ion De Esta	do 2015									
//P V \\													
//LA PAMPA\\	7		INF	ORME INDICE ESTA	ADO								
RUTA	INICIO	FIN	DESCIN	DESFIN	D1	D2	D3	D4	I.E	LONG	В	R	М
P001	0	20	RN188	KM 20	0	6	8	1	3,95	20			20
P001	20	25,7	KM 20	RP2	0	6	6	1	4,68	5,7			5,7
P001	25,7	55,71	RP2	RP4	0	3	6	1	5,27	30,01		30,01	
P001	55,71	71,5	RP4	KM71.5	0	4	8	3	3,79	15,79			15,79
P001	71,5	81,96	KM 71.5	RP102	0	4	9	2	4,03	10,46			10,46
P001	81,96	144	RP102	RP10	0	1	4	0	7,19	62,04	62,04		
P001	144,53	172,82	RP10	RN5	0	1	1	0	8,87	28,29	28,29		
P001	195	230,15	RN5	RP14	0	4	8	7	3,53	35,15			35,15
P001	230,15	264,97	RP14	RP18	0	4	0	0	8,19	34,82	34,82		
P001	268,13	277,03	MACACHÍN	KM277	0	1	3	0	7,71	8,9	8,9		
P001	277,03	292,08	KM 277	RP20	0	1	0	0	9,51	15,05	15,05		
P001	292,08	329,43	RP20	RP24	0	1	0	0	9,51	37,35	37,35		
P001	329,43	340,74	RP24	KM340	0	3	8	6	3,23	11,31			11,31
P001	340,74	361,1	KM340	RN35	0	5	6	6	3,36	20,36			20,36
P001	361,1	394,44	RN35	SAL.COL.	0	3	8	6	3,87	33,34			33,34
P002	0	20,39	MER.V	RP1	0	2	4	2	6,31	20,39		20,39	
P002	20,39	50,56	RP1	RP7	0	3	3	2	6,44	30,17		30,17	
P002	54,96	85,2	RP101	RN35	0	4	2	4	6,07	30,24		30,24	
P002	90,2	110,4	RN35	RP9	0	3	2	4	6,38	20,2		20,2	
P003	203,54	206,59	RP20	RP20	0	3	0	6	6,77	3,05		3,05	
P003	252,59	258,71	RN35	ABRAMO	0	0	8	5	4,03	6,12			6,12
P004	0	20	MER V	RP1	0	2	6	0	5,95	20		20	
P004	47,81	91,94	RP101	RN35	0	0	0	0	10,00	44,13	44,13		
P004	91,94	113,64	RN35	RP9	0	3	8	6	3,87	21,7			21,7
P004	113,64	153,89	RP9	RP11	0	3	8	4	4,19	40,25			40,25
P004	163,81	179,37	RP11	LTE.S.LUIS	0	1	5		6,44	15,56		15,56	
P007	0	29,45	RN188	RP2	0	4	8	3	3,79	29,45		7.47	29,45
P007	29,45	36,92	RP2	RP2	0	1	6	4	5,33	7,47		7,47	
P007 P007	83,06	127,52	RP102	RP10	0	3	3	1	6,70	44,46		44,46	
P007 P009	127,52	167,52	RP10	RN5	0	4	8		3,53	40		0.40	40
P009 P009	6,02	15,2	RN188	PARERA	0	1	4	4	6,13 10,00	9,18	22.45	9,18	
P009	15,2	38,65	PARERA RP2	RP2 RP4	0	0	0	0	5,43	23,45	23,45	20.01	
P009	38,65 216,102	68,66 221,7		Autodromo	0	3	6	1	10,00	30,01	5,598	30,01	
P009	276,41	294.12	Toay RP18	UTRACÁN	0		5	0	5,83	5,598 17,71	3,380	17,71	
P009	294.12	304.84	UTRACÁN	RN152	0	3	5	1	3,91	10,72		11,11	10,72
P010	0	10,17	MER V	RP1	0	2	-	4	4,40	10,72			10,72
P010	10,17	40,59	RP1	RP3	0	4	8		4,15	30,42			30,42
P010	40,59	81,05	RP3	RN35	0	3	9		3,91	40,46			40,46
P010	86,49	124,34	RN35	KM124	0	0	5		7,05	37,85	37,85		10,70
P010	124,34	157,83	KM124	KM157.5	0	1	2		8,27	33,49	33,49		
P010	157,83	197,95	KM157.5	KM197.59	0	2	8		4,58	40,12	,.0		40,12
P010	197,95	237,4	TELÉN	KM237.06	0	3	3		5,95	39,45		39,45	,
P010	237,4	267,92	KM237.06	RP17	0	3	7		4,68	30,52		,	30,52
P010	267,92	278,34	RP17	PROG.278	0	3	6		4,82	10,42			10,42
P010	278,34	288,04	PROG.278	E.MITRE	0	3	5		5,17	9,7		9,7	
P010	288,04	318,43	E.MITRE	RN143	0	2	4		5,83	30,39		30,39	

P011	9,92			9,92	4,68	3	7	3	0	RP4	RP4	77,52	67,6	P011
P013	24,93			·	4,68	0			0					P011
P013	25,33			,	4,92	6	6	1	0					P013
P013			45.91			1	0	0	0			,		P013
P014			34,49	34,49	10,00	0	0	0	0	RN143	RP18	158,49		P013
P014 24,99 40,09 RP1 RP3 0 0 7,05 15,1 15,1 15,1 P014 40,09 80,2 RP3 RN35 0 2 0 6,38 40,11 40,11 40,11 P014 97,06 130,2 RP9 KM130.01 3 6 4,19 33,14 7 P014 130,2 140,2 KM130 RP11 0 3 4,19 33,14 9 4,19 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 40,11			10		7,33	4	0	3	0	KM10	MER V		0	P014
P014		14,99		14,99	6,51	3	3	2	0	RP1	KM10	24,99	10	P014
P014 99,06 97,06 RN35 RP9 0 2 6 5,95 7 7 7 P014 97,06 130,2 RP9 KM130.01 0 3 6 4,19 33,14 1 P014 130,2 140,2 KM 130 RP11 0 3 6 4,19 33,14 1 P014 140,2 160,2 RP11 KM160 0 4 6 8 3,83 20			15,1	15,1	7,05	0	5	0	0	RP3	RP1	40,09	24,99	P014
P014		40,11		40,11	6,38	0	5	2	0	RN35	RP3	80,2	40,09	P014
P014		7		7	5,95	0	6	2	0	RP9	RN35	97,06	90,06	P014
P014 140,2 160,2 RP11 KM160 0 4 8 6 3,83 20 P014 180,17 24,77 RP13 RP15 0 2 7 5 4,92 44,6 P018 0 25,13 MER V RP1 0 1 8 4,02 25,13 P018 25,13 40,17 RP1 RP3 0 4 9 8 3,57 15,04 P018 40,17 80,69 RP3 RN35 0 3 7 2 4,87 40,62 P018 100,75 105,86 QUEHUÉ RP9 0 4 6 5,38 5,11 5,11 P020 0 9,14 RP1 ALPACHIRI RP3 0 2 9,51 9,14 9,14 9,14 P020 18,08 58,65 RP3 RN35 0 4 2 0 6,560 40,67 40,67 P020 194,36 246,87 RN143 RP17 0 3 7 2 4,87 52,51 P020 246,87 303,61 RP17 KM303,61 0 3 7 2 4,87 52,51 P020 303,61 342,21 KM303,61 KM342,21 0 3 7 6,57 38,6 38,6 P024 0 18,06 MER V GUATRACHÉ 2 4 9 4 3,47 18,06 P024 18,06 23,6 GUATRACHE RP1 1 1 0 9,26 5,54 5,54 P034 510 524 510 RN151 0 9,92 14 19,07 10,72 P034 550 524 510 RN151 0 9,92 14 19,07 10,72 P034 550 57 RN188 FALUCHO 0 1 9,14 19,07 1	33,14			33,14	4,19	4	8	3	0	KM130.01	RP9	130,2	97,06	P014
P014 160,2 180,17 KM160 RP13 0 3 6 4,72 19,97 P014 180,17 224,77 RP13 RP15 0 2 3 8,02 44,6 44,6 4,02 24,6 4,82 25,13 4,02 44,6 4,02 25,13 4,02 25,13 4,02 25,13 4,02 25,13 4,02 25,13 4,02 25,13 4,02 25,13 4,02 25,13 4,02 20,00 15,04 4,02 20,00 15,04 4,02 20,00 15,04 4,02 20,00 15,04 4,05 2,00 4,05 2,00 4,05 2,00 4,05 2,00 4,05 2,00 2,00 15,04 4,05 2,00 3,00 15,04 4,05 2,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00 3,00	10			10	4,19	4	8	3	0	RP11	KM 130	140,2	130,2	P014
P014 180,17 224,77 RP13 RP15 0 2 7 5 4,92 44,6 46,6 P018 0 25,13 MER V RP1 RP3 0 1 8 3,57 15,04 15,04 P018 40,17 80,69 RP3 RN35 0 3 7 2 4,87 40,52 15,04 P018 80,69 100,75 RN35 QUEHUÉ RP9 0 4 6 0,538 5,11 5,11 5,11 P020 0 9,14 RP1 ALPACHIRI RP3 0 2 0 9,51 9,14 9,14 P020 19,436 246,87 RN143 RP17 0 3 7 2,487 5,94 5,94 P020 194,36 246,87 RN143 RP17 KM303.61 KM342.21 0 3 7 2,487 52,51 P020 303,61 342,21 KM342.21<	20			20	3,83	5	8	4	0		RP11		140,2	P014
P018 0 25,13 MER V RP1 RP3 0 1 6 5 4,82 25,13 L P018 25,13 40,17 RP1 RP3 0 4 9 5 3,57 15,04 L P018 80,69 100,75 RN35 QUEHUÉ RP9 0 4 7 1 4,82 20,06 L P018 100,75 105,86 QUEHUÉ RP9 0 4 6 5,38 5,11 5,11 P020 0 9,14 RP1 ALPACHIRI RP3 0 2 0 9,51 9,14 9,14 5,94 P020 18,08 58,65 RP3 RN35 0 4 2 6,84 5,94 5,94 P020 194,36 246,87 RN143 RP17 KM303,61 0 3 7 15,07 56,74 56,74 P020 342,21 384,15 KM303,61<	19,97			19,97	4,72	1	8	3	0	RP13	KM160		160,2	P014
P018 25,13 40,17 RP1 RP3 0 4 0 6 3,57 15,04 15,04 P018 40,17 80,69 RP3 RN35 QUEHUÉ 0 4 7 2 4,87 40,62 40,62 P018 80,69 100,75 RN35 QUEHUÉ RP9 4 6 5,38 5,11 5,11 P020 0 9,14 RP1 ALPACHIRI RP3 0 2 0 9,51 9,14 9,14 P020 18,08 58,65 RP3 RN35 0 4 2 6,68 5,94 5,94 P020 194,36 246,87 RN143 RP17 KM303.61 0 3 7 5,60 40,57 40,57 P020 246,87 303,61 RP17 KM303.61 KM 342.21 0 3 7 5,67 56,74 56,74 P020 342,21 384,15 KM341.59	44,6			44,6	4,92	3	7	2	0	RP15	RP13	224,77	180,17	P014
P018 40,17 80,69 RP3 RN35 0 3 7 2 4,67 40,52 P018 P018 80,69 100,75 RN35 QUEHUÉ RP9 0 4 0 5,38 5,11 5,11 P020 0 9,14 RP1 ALPACHIRI RP3 0 2 0 9,51 9,14 9,14 P020 9,14 15,08 ALPACHIRI RP3 0 2 0 7,6,84 5,94 5,94 P020 18,08 58,65 RP3 RN35 0 4 2 6,60 40,57 40,57 P020 194,36 246,87 RN143 RP17 0 3 7 2 4,87 52,51 P020 303,61 RP17 KM303,61 N 3 7 1 5,07 56,74 56,74 P020 342,21 384,15 KM341.59 RN151 0 3 7	25,13			25,13	4,82	3	8	1	0		MER V	25,13	0	
P018 80,69 100,75 RN35 QUEHUÉ 0 4 7 4,82 20,06 5,11 5,11 P018 100,75 105,86 QUEHUÉ RP9 0 4 6 5,38 5,11 5,11 P020 0 9,14 RP1 ALPACHIRI RP3 0 2 0 7 6,84 5,94 9,14 10,5 10,5 10,5 10,5 10,5 10,5 10,5 10	15,04			15,04	3,57	5	9	4	0	RP3		40,17	25,13	P018
P018 100,75 105,86 QUEHUÉ RP9 0 4 6 0 5,38 5,11 5,11 P020 0 9,14 RP1 ALPACHIRI RP3 0 2 0 9,51 9,14 9,14 9,14 P020 18,08 58,65 RP3 RN35 0 2 0 7 6,84 5,94 5,94 P020 194,36 246,87 RN143 RP17 0 0 3 7 2 5,60 40,57 40,57 P020 246,87 303,61 RP17 KM303.61 KM 342.21 0 3 7 1 5,07 56,74 56,74 P020 303,61 342,21 KM 303.61 KM 342.21 0 3 7 1 5,07 56,74 56,74 P020 342,21 384,15 KM341.59 RN151 0 3 7 1 5,07 41,94 41,94 P024<	40,52			40,52	4,87	2	7	3	0			80,69	40,17	
P020 0 9,14 RP1 ALPACHIRI 0 1 0 0 9,51 9,14 9,14 9,14 P020 18,08 58,65 RP3 RN35 0 4 2 6,84 5,94 5,94 P020 194,36 246,87 RN143 RP17 0 3 7 2 5,60 40,57 40,57 P020 194,36 246,87 RN143 RP17 KM303,61 RP17 KM303,61 8 5,07 56,74 55,77 P020 303,61 342,21 KM341.59 RN151 0 3 7 0 5,27 38,6 38,6 P024 0 18,06 MER V GUATRACHÉ 2 4 9 4 3,47 18,06 38,6 P024 18,06 23,6 GUATRACHE RP1 1 1 0 9,26 5,54 5,54 P034 506 510 506 510 </th <th>20,06</th> <th></th> <th></th> <th>20,06</th> <th>4,82</th> <th>1</th> <th>7</th> <th>4</th> <th>0</th> <th></th> <th></th> <th>100,75</th> <th>80,69</th> <th></th>	20,06			20,06	4,82	1	7	4	0			100,75	80,69	
P020 9,14 15,08 ALPACHIRI RP3 0 2 0 7 6,84 5,94 5,94 P020 18,08 58,65 RP3 RN35 0 4 2 6,60 40,57 40,57 P020 194,36 246,87 RN143 RP17 KM303.61 RP17 KM303.61 0 3 7 2,507 56,74 56,74 P020 246,87 303,61 RP17 KM303.61 KM342.21 0 3 7 1,507 56,74 56,74 P020 342,21 384,15 KM341.59 RN151 0 3 7 1,507 41,94 41,94 P024 0 18,06 MER V GUATRACHÉ 2 4 9 4 3,47 18,06 38,6 38,6 P024 18,06 23,6 GUATRACHÉ RP1 1 1 0 9,26 5,54 5,54 P034 495,28 506<		5,11		5,11	5,38	0	6	4	0	RP9	QUEHUÉ		100,75	
P020 18,08 58,65 RP3 RN35 0 4 2 6,60 40,57 40,57 P020 194,36 246,87 RN143 RP17 0 3 7 2,60 40,57 40,57 P020 246,87 303,61 RP17 KM303.61 KM303.61 0 3 7 5,07 56,74 56,74 P020 303,61 342,21 KM303.61 KM342.21 0 3 7 5,07 56,74 56,74 P020 342,21 S84,15 KM341.59 RN151 0 3 7 5,07 38,6 38,6 P024 0 18,06 MER V GUATRACHÉ 2 4 9,26 5,54 5,54 P034 495,28 506 RP26 506 510 1 0 9,26 5,54 5,54 P034 510 524 510 RN151 0 0 9,92 14 14			9,14	9,14		0	0	1	0				0	
P020 194,36 246,87 RN143 RP17 0 3 7 2 4,87 52,51 52,51 P020 246,87 303,61 RP17 KM303.61 0 3 7 1 5,07 56,74 56,74 P020 303,61 342,21 KM 303.61 KM 342.21 0 3 7 0 5,27 38,6 38,6 P020 342,21 384,15 KM341.59 RN151 0 3 7 1 5,07 41,94 41,94 P024 0 18,06 MER V GUATRACHÉ 2 4 9 4 3,47 18,06 9 P024 18,06 23,6 GUATRACHE RP1 1 1 0 9,26 5,54 5,54 P034 495,28 506 RP26 506 510 1 0 0 9,31 10,72 10,72 P034 510 524 510 RN151 </th <th></th> <th>5,94</th> <th></th> <th>5,94</th> <th></th> <th>7</th> <th>0</th> <th>2</th> <th>0</th> <th>RP3</th> <th>ALPACHIRI</th> <th>15,08</th> <th>9,14</th> <th></th>		5,94		5,94		7	0	2	0	RP3	ALPACHIRI	15,08	9,14	
P020 246,87 303,61 RP17 KM303.61 0 3 7 1 5,07 56,74 56,74 P020 303,61 342,21 KM 303.61 KM 342.21 0 3 7 0 5,27 38,6 38,6 P020 342,21 384,15 KM341.59 RN151 0 3 7 5,07 41,94 41,94 P024 0 18,06 MER V GUATRACHÉ 2 4 9 43,47 18,06 9 P024 18,06 23,6 GUATRACHE RP1 1 1 0 9,26 5,54 5,54 P034 495,28 506 RP26 506 510 1 2 8 3 4,40 4 P034 506 510 506 510 RN151 0 0 9,92 14 14 14 P101 0 19,57 RN188 FALUCHO 1 9,14		40,57		40,57		6	2	4	0		_	,		
P020 303,61 342,21 KM 303.61 KM 342.21 0 3 7 0 5,27 38,6 38,6 P020 342,21 384,15 KM341.59 RN151 0 3 7 1 5,07 41,94 41,94 P024 0 18,06 MER V GUATRACHÉ 2 4 9 4 3,47 18,06 41,94 41,94 P024 18,06 23,6 GUATRACHE RP1 1 1 0 9,26 5,54 5,54 5,54 P034 495,28 506 RP26 506 510 0 9,31 10,72 10,72 P034 510 524 510 RN151 0 0 9,92 14 14 14 P101 0 19,57 RN188 FALUCHO 1 1 9,14 19,57 19,57 P101 44,65 79,8 RP7 AVDA.CIRC. G.P. 1 6 <	52,51					2	7	3	0					
P020 342,21 384,15 KM341.59 RN151 0 3 7 1 5,07 41,94 41,94 P024 0 18,06 MER V GUATRACHÉ 2 4 9 4 3,47 18,06 9 P024 18,06 23,6 GUATRACHE RP1 1 1 0 9,26 5,54 5,54 P034 495,28 506 RP26 506 510 1 2 8 3 4,40 4 P034 506 510 506 510 RN151 0 0 9,31 10,72 10,72 P034 510 524 510 RN151 0 0 0 9,92 14 14 14 P101 0 19,57 RN188 FALUCHO 1 0 1 9,14 19,57 19,57 P101 44,65 79,8 RP7 AVDALCIRC. G.P. 0 1 2						1	7	3	0					
P024 0 18,06 MER V GUATRACHÉ 2 4 9 4 3,47 18,06 9 P024 18,06 23,6 GUATRACHE RP1 1 1 0 0 9,26 5,54 5,54 P034 495,28 506 RP26 506 510 1 0 0 9,31 10,72 10,72 P034 506 510 506 510 RN151 0 0 9,92 14 14 P034 510 524 510 RN1551 0 0 0 9,92 14 14 P101 0 19,57 RN188 FALUCHO 1 0 1 9,14 19,57 19,57 P101 44,65 79,8 RP7 AVDA.CIRC. G.P. 0 1 6 2 5,77 35,15 35,15 P102 13,7 17,8 KM13,7 RP7 0 5 7						0	7	3	0					
P024 18,06 23,6 GUATRACHE RP1 1 1 0 0 9,26 5,54 5,54 P034 495,28 506 RP26 506 510 1 2 8 3 4,40 4 P034 506 510 506 510 RN151 0 0 9,92 14 14 P034 510 524 510 RN151 0 0 9,92 14 14 P101 0 19,57 RN188 FALUCHO 0 1 9,14 19,57 19,57 P101 44,65 79,8 RP7 AVDA.CIRC. G.P. 0 1 6 2 5,77 35,15 35,15 P102 0 13,7 RP1 KM13,7 RP7 5 7 4,77 4,1 9,14 P102 17,8 51,48 RP7 RN35 0 1 3 0,7,71 33,68 33,68 <th></th> <th>41,94</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th>		41,94							_					
P034 495,28 506 RP26 506 1 1 0 9,31 10,72 10,72 P034 506 510 506 510 1 2 8 3 4,40 4 P034 510 524 510 RN151 0 0 0 9,92 14 14 P101 0 19,57 RN188 FALUCHO 0 1 9,14 19,57 19,57 P101 44,65 79,8 RP7 AVDA.CIRC. G.P. 0 1 6 2 5,77 35,15 35,15 P102 0 13,7 RP1 KM13,7 0 3 9 4,58 13,7 19,57 P102 13,7 17,8 KM13.7 RP7 0 5 7 4,77 4,1 P102 17,8 51,48 RP7 RN35 RP9 0 4 8 3,15 33,41 P102 84,89	18,06			,					2					
P034 506 510 506 510 1 2 8 3 4,40 4 4 P034 510 524 510 RN151 0 0 0 9,92 14 14 P101 0 19,57 RN188 FALUCHO 1 0 1 9,14 19,57 19,57 P101 44,65 79,8 RP7 AVDA.CIRC. G.P. 0 1 6 2 5,77 35,15 35,15 P102 0 13,7 RP1 KM13,7 0 3 9 4,58 13,7 19,57 P102 13,7 17,8 KM13.7 RP7 0 5 7 4,77 4,1 1,1						0	0	1	1					
P034 510 524 510 RN151 0 0 0 9,92 14 14 P101 0 19,57 RN188 FALUCHO 1 0 1 9,14 19,57 19,57 P101 44,65 79,8 RP7 AVDA.CIRC. G.P. 0 1 6 2 5,77 35,15 35,15 P102 0 13,7 RP1 KM13,7 RP7 0 5 7 0 4,58 13,7 P102 13,7 17,8 KM13.7 RP7 0 5 7 0 4,77 4,1 P102 17,8 51,48 RP7 RN35 RP3 0 4 8 3,415 33,41 P102 51,48 84,89 RN35 RP9 0 4 8 3,415 33,41 P102 84,89 117,12 RP9 RP11 0 5 5,49 32,23 32,23 <			10,72						1					
P101 0 19,57 RN188 FALUCHO 0 1 0 1 9,14 19,57 19,57 P101 44,65 79,8 RP7 AVDA.CIRC. G.P. 0 1 6 2 5,77 35,15 35,15 P102 0 13,7 RP1 KM13,7 RP7 0 3 9 0 4,58 13,7 P102 13,7 17,8 KM13.7 RP7 0 5 7 0 4,77 4,1 P102 17,8 51,48 RP7 RN35 0 1 3 0 7,71 33,68 33,68 P102 51,48 84,89 RN35 RP9 0 4 8 3,415 33,41 P102 84,89 117,12 RP9 RP11 0 5 5,49 32,23 32,23 P102 129,3 144,8 RP11 L.TORO 1 4 0 7,19 15,5	4								-					
P101 44,65 79,8 RP7 AVDA.CIRC. G.P. 0 1 6 2 5,77 35,15 35,15 P102 0 13,7 RP1 KM13,7 0 3 9 0 4,58 13,7 P102 13,7 17,8 KM13.7 RP7 0 5 7 0 4,77 4,1 P102 17,8 51,48 RP7 RN35 0 1 3 0 7,71 33,68 33,68 P102 51,48 84,89 RN35 RP9 0 4 8 3,415 33,41 P102 84,89 117,12 RP9 RP11 0 5 5,49 32,23 32,23 P102 129,3 144,8 RP11 L.TORO 1 4 7,19 15,5 15,5 P105 0 28,55 LTE.S.LUIS RP10 4 8 4 3,99 28,55 P105 28,55<														
P102 0 13,7 RP1 KM13,7 0 3 9 0 4,58 13,7 13,7 P102 13,7 17,8 KM13.7 RP7 0 5 7 0 4,77 4,1		05.45	19,57	,					-			,	-	
P102 13,7 17,8 KM13.7 RP7 0 5 7 0 4,77 4,1 4,1 P102 P102 17,8 51,48 RP7 RN35 RN35 RP9 0 4 3 0 7,71 33,68 33,68 33,68 33,68 33,68 33,68 33,68 34,15 33,41 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 33,41 24,15 24,15 34,15 33,41 24,15 24,15 24,15 24,15 24,15 24,15 24,15 24,15 24,1	10.7	35,15							-					
P102 17,8 51,48 RP7 RN35 0 1 3 0 7,71 33,68 33,68 P102 51,48 84,89 RN35 RP9 0 4 8 3 4,15 33,41 33,41 P102 84,89 117,12 RP9 RP11 0 5 5 0 5,49 32,23 32,23 P102 129,3 144,8 RP11 L.TORO 1 4 0 7,19 15,5 15,5 P105 0 28,55 LTE.S.LUIS RP10 0 4 8 4 3,99 28,55 P105 28,55 64,15 RP10 RP13 0 2 2 2 7,26 35,6 35,6 bueno regular	13,7 4,1			· ·		0								
P102 51,48 84,89 RN35 RP9 4 8 3 4,15 33,41 33,41 P102 84,89 117,12 RP9 RP11 5 5 5,49 32,23 32,23 P102 129,3 144,8 RP11 L.TORO 1 4 0 7,19 15,5 15,5 P105 0 28,55 LTE.S.LUIS RP10 RP13 2 2 2 7,26 35,6 35,6 P105 28,55 64,15 RP10 RP13 2 2 2 7,26 35,6 35,6	4, 1		33.68			0								
P102 84,89 117,12 RP9 RP11 0 5 5 0 5,49 32,23 32,23 P102 129,3 144,8 RP11 L.TORO 0 1 4 0 7,19 15,5 15,5 P105 0 28,55 LTE.S.LUIS RP10 RP13 0 2 2 2 7,26 35,6 35,6 P105 28,55 64,15 RP10 RP13 0 2 2 2 7,26 35,6 35,6 bueno regular	33,41		55,00	,					-			,		
P102 129,3 144,8 RP11 L.TORO 0 1 4 0 7,19 15,5 15,5 15,5 P105 0 28,55 LTE.S.LUIS RP10 RP13 0 2 2 2 7,26 35,6 35,6 P105 28,55 64,15 RP10 RP13 0 2 2 2 7,26 35,6 35,6 bueno regular	JJ, 4 I	32 23		1								,		
P105 0 28,55 LTE.S.LUIS RP10 0 4 8 4 3,99 28,55 28,55 P105 28,55 64,15 RP10 RP13 0 2 2 2 7,26 35,6 35,6 bueno regular		52,25	15.5	,										
P105 28,55 64,15 RP10 RP13 0 2 2 2 7,26 35,6 35,6 bueno regular	28,55		10,0											
bueno regular	20,00		35.6	,					- 1			,	-	
	malo	regular	,		- ,	-			1	111 10	11. 10	01,10	20,00	
	885,43	676,37	580,218	2162,018	(km)	ıado	valı	al e	Tota					
% 26,84 31,28	40,95		,	,	_ , ,,			. •						


ESTADO DE RUTAS (km) 580,218 Bueno regular malo

INDICE DE ESTADO DE ACCESOS, AÑO 2015- LA PAMPA

D								_	_	
RUTA AAGP	INICIO 0	FIN 1,25	DESCIN R.PROV.1	DESFIN AERÓDROMO G.P.	D1 D2 D3 D4	I.E 4,45	LONG 1,25	В	R	M 1,25
AAGU	0	30,37	R.PROV.1	AGUSTONI	0 2 0 5	7,41	30,37	30,37		1,20
AALP	0	0,09	RP20	ALPACHIRI	0 0 0 0	10,00	0,09	0,09		
AANG	0	0,93	R.NAC.5	ANGUIL	0 1 8 4	4,63	0,93			0,93
ABER ABGU	0	0,74	R.NAC.35	BERNASCONI BALNEARIO CHATR	0 2 8 6	4,07 3,75	0,74			0,74
ABRA	0	9,73 0,75	R.PROV.24 R.PROV.3	BALNEARIO GUATR ABRAMO	0 2 8 8	6,57	9,73 0,75		0,75	9,73
ABUT	0	1,5	R.PROV.9	BALNEARIO UTRAC	0 1 5 0	6,70	1,5		1,5	
ACAL	0	2,84	R.PROV.4	CALEUFÚ	0 2 6 0	5,95	2,84		2,84	
ACAS	0	0,44	R.PROV.102	E.CASTEX	0 0 0 0	10,00	0,44	0,44		
ACAT	0	1,24	R.PROV.1	CATRILÓ	0 0 0 0	10,00	1,24	1,24		
ACBO ACBS	0	3,98 2.08	R.PROV.10	C.BARÓN C.BARÓN	0 1 4 0	7,19 6,25	3,98 2,08	3,98	2,08	
FCCH	0	18,08	R.PROV.10	C.CHICA	0 0 6 0	6,57	18,08		18,08	
ACEB	0	1,8	R.PROV.2	CEBALLOS	0 1 0 0	9,51	1,8	1,8	,	
ACON	0	0,81	R.PROV.102	CONHELLO	0 0 6 0	6,57	0,81		0,81	
FDIV	0	1,99	ACC.C.CHICA	DIVISADEROS	0 0 3 0	8,11	1,99	1,99		
ADOB ADOR	0	1,94	R.PROV.18 RP1	DOBLAS DOBLA	0 1 6 0	6,25 9,23	1,94	0,33	1,94	
AEME	0	0,33 1,1	R.NAC.35	DORILA EMB.MARTINI	2 0 0 0	10,00	0,33 1,1	1,1		
AEMN	0	2,5	R.PROV.2	EMB.MARTINI	0 0 0 1	9,61	2,5	2,5		
AETM	0	3,58	R.PROV.N°18	E.TRANS.MACACHI	0 0 0 6	7,87	3,58	3,58		
AGCA	0	1,86	R.PROV.1	G.CAMPOS	0 1 0 0	9,51	1,86	1,86		
AGSM	0	1,11	R.NAC.35	SAN MARTÍN	0 1 8 2	5,02	1,11		1,11	
AGUA AHLA	0	1,2 2,3	R.PROV.24 R.NAC.188	GUATRACHÉ H.LAGOS	0 1 10 5	3,87 4,77	1,2 2,3			1,2 2,3
AIAL	0	3,07	R.NAC.188 R.PROV.2	I.ALVEAR	0 2 8 2	8,52	3,07	3,07		۷,۵
AITA	0	1,74	R.PROV.2	ALTA ITALIA	0 1 5 6	5,27	1,74	2,01	1,74	
AIVA	0	12,6	RN005	IVANOWSKY	0 2 3 1	7,05	12,6	12,6		
AJAR	0	2,07	R.NAC.35	J. ARAUZ	0 1 8 4	4,63	2,07			2,07
ALAR ALAD	0	1,22	R.NAC.188	B.LARROUDÉ LA ADELA	0 0 0 0	10,00 4,36	1,22	1,22		
FLMA	0	0,37	R.NAC.22 R.PROV.11	LA MARUJA	0 3 8 3	5,43	0,37		0,37	3
ALON	0	1,14	R.NAC.5	LONQUIMAY	0 1 0 0	9,51	1,14	1,14	0,07	
ALOV	0	6,42	R.PROV.10	LOVENTUÉ	0 2 6 4	5,07	6,42	,	6,42	
ALTO	0	5,13	R.PROV.10	LUAN TORO	0 2 6 0	5,95	5,13		5,13	
ALUN	0	1,71	R.PROV.2	I.LUIGGI	1 1 8 0	5,29	1,71		1,71	
ALUO FMAI	0	1,03 1,3	R.PROV.9 R.NAC.188	I.LUIGGI MAISSONAVE	0 3 3 0	6,98 10,00	1,03 1,3	1,3	1,03	
AMAY	0	3,39	R.PROV.10	M.MAYER	0 0 0 0	4,40	3,39	1,3		3,39
AMCA	0	0,14	R.PROV. 1	MIGUEL CANE	0 0 0 0	10,00	0,14	0,14		0,00
AMRE	0	0,14	R.PROV. 1	MIGUEL RIGLOS	0 3 7 5	4,32	0,14			0,14
AMRN	0	4,19	R.PROV.14	M.RIGLOS	0 0 0 0	10,00	4,19	4,19		
ANCH AOJE	0	3,34	R.PROV.14	ANCHORENA	0 1 6 4	5,33	3,34		3,34	
APAR	0	1,32 1,41	R.PROV.2 R.PROV.9	OJEDA PARERA	0 1 6 4	5,33 8,35	1,32 1,41	1,41	1,32	
APHU	0	2,11	R.PROV.4	PICHI HUINCA	0 2 8 4	4,40	2,11	.,		2,11
AQQE	0	1,43	R.PROV.1	QUEMÚ QUEMÚ	0 0 0 0	10,00	1,43	1,43		
FQUE	0	0,86	R.NAC.188	QUETREQUÉN	0 1 8 4	4,63	0,86			0,86
ARAN	0	1,18	R.NAC.188	RANCÚL	0 1 10 4	4,03	1,18			1,18
ARAT AREO	0	0,93 0,97	R.PROV.4 R.NAC.35	ARATA REALICÓ	0 3 8 4	4,19 6,51	0,93 0,97		0,97	0,93
ARES	0	0,52	R.N. 188	REALICO	0 3 0 7	4,23	0,52		0,31	0,52
AROL	0	4,41	R.PROV.18	ROLÓN	0 1 6 0	6,25	4,41		4,41	-,
ARUC	0	0,94	R.PROV.102	RUCANELO	0 0 3 0	8,11	0,94	0,94		
FSAR	0	2,29	R.NAC.188	SARAH	0 0 0 0	10,00	2,29	2,29		
ASGR ASMA	0	8,95 5.42	R.PROV.1	S.GRANDES S.MADÍA	0 2 8 7	3,91 4,07	8,95			8,95 5.42
ASPE	0	5,42 0,47	R.NAC.35 R.PROV.101	S. MARÍA SPELUZZI	0 2 8 6	8,11	5,42 0,47	0,47		5,42
ASTE	0	9,57	R.PROV.24	S.TERESA	0 1 6 2	5,74	9,57	5,77	9,57	
ATEE	0	1,2	R.PROV.10	TELÉN	0 2 8 7	3,91	1,2			1,2
ATEO	0	0,64	R.PROV.10	TELÉN	0 1 6 0	6,25	0,64		0,64	
ATOA	0	5,42	R.PROV.14	TOAY	3 2 6 0	5,38	5,42	4.4-	5,42	
ATRE ATRN	0	1,17 1,3	R.PROV.4 R.PROV.4	TRENEL TRENEL	0 0 0 0	10,00 6,00	1,17 1,3	1,17	1,3	
AUNA	0	7,42	R.PROV.4 R.NAC.35	UNANUE	0 1 6 1	4,23	7,42		1,3	7,42
AURI	0	3,23	R.NAC.5	URIBURU	0 0 1 0	9,32	3,23	3,23		
AVER	0	0,71	R.PROV.101	VERTIZ	0 0 0 0	10,00	0,71	0,71		
AVIC	0	2,8	R.PROV.10	VICTORICA	0 2 8 10	3,46	2,8			2,8
AVMO	0	5	Ruta Prov. 7	V. MIRASOL	0 2 0 0	9,05	5	5	40.45	
AVMS AVPR	0	10,13 3,82	R.PROV.10 R.NAC.188	V. MIRASOL A.VAN PRAET	0 2 6 2	5,49 9,51	10,13 3,82	3,82	10,13	
AWIN	0	3,51	R.NAC.166 R.NAC.35	WINIFREDA	0 1 0 0	5,95	3,51	3,02	3,51	
								bueno	regular	malo
				TOTAL EVALUA	. ,		235,67	93,41	86	56,14
				Estado (%				40	37	24

ESTADO DE ACCESOS (km)

CLASIFICACION DEL TRANSITO

TABLA DE CLASIFICACION VEHICULAR

Número	Tipo		EJES	CLASE
1	Motocicleta	d=0	2	1
2	Auto	~	2	2
3	Pickup	6-0	2	3
4	Bus 2ejes		2	4
5	Camión 11		2	6
6	Pickup + rem.1e	€_00	3	3
7	Bus 3ejes		3	5
8	Camión 12		3	7
9	Semi 111		3	10
10	Pickup + rem.2e	~ ~~	4	3
11	Bus 4ejes		4	5
12	Camión 13	<u></u>	4	7
13	Camión 11-11		4	8
14	Semi 121		4	11
15	Semi 112		4	11
16	Camión 11-12		5	9
17	Camión 12-11		5	9
18	Semi 11(1)2		5	12
19	Semi 122		5	12
20	Semi 113		5	12
21	Semi 111 + Rem 11		5	8
22	Semi 12(1)2		6	13
23	Camión 12-12		6	13
24	Semi 123		6	14

CENSOS 2015

\mid			motos	autos	camionetas				_ c	CI ASES							VEH	VEH I MIANOS	VEH DESADOS	SADOS
RUTAN°	TRAMO	FECHA	Class 1	Class 2	Class 3	Class 4	Class 5	Class 6	Class 7	8	Class 9 C	lass 10 C	lass 11 C	Class 10 Class 11 Class 12 Class 13 Class 14	13 Class 1	4 TMDA	TMDA	%	TMDA	%
RN N°	RN N° 35 - RP N° 14															0	0	#DIV/0i	0	#¡DIV/0!
RP N°1	RP N° 18 - R9 N° 20															0	0	#¡DIV/0i	0	#¡DIV/0!
SN Nº3	RN N° 35 - RP N° 30															0	0	#!DIV/0i	0	#¡DIV/0!
RP N°1	RP N° 14 - RP N° 18															0	0	#DIV/0i	0	#¡DIV/0!
RP N°1 RP N°2	RP N° 2 - Gral. PICO															0	0	#¡DIV/0i	0	#¡DIV/0!
Int. Alve	Int. Alvear - RN Nº 188	15/04/2015	7	515	263	80	22	71	3	6	92	4	39	31 2	2	1071	785	73%	286	27%
RP N°1 Int. Alve	Int. Alvear - RP N° 2	15/04/2015	12	589	327	4	21	92	3	8	2.2	4	34	32 0	2	1178	928	%62	250	21%
RP Nº 102 Gral. Pi	Gral. Pico - RP Nº7	07/05/2015	12	1621	523	6	24	171	8	13	29	11	48	14 0	0	2513	2156	%98	357	14%
RP N° 102 RN N° 3	RN N° 35 - RP N° 7	29/04/2015	9	798	273	2	19	66	7	8	37	7	28	15 1	2	1302	1077	83%	225	17%
RP N° 102 RP N°7	RP Nº7 - Gral. Pico															0	0	i0/∧IQ!#	0	#;DIV/0!
RP Nº 102 E. Cast	E. Castex - Conhello															0	0	#!DIV/0i	0	#¡DIV/0!
RP N° 102 RP N° 1	RP N° 11 - Luan Toro															0	0	#!DIV/0i	0	#¡DIV/0!
RP Nº 105 Limite S	Limite S. Luis - RP Nº10															0	0	#!DIV/0i	0	#¡DIV/0!
RP N° 105 RP N°1	RP N°10 - RP N° 13															0	0	10/NIQ!#	0	#¡DIV/0!
Acc. Agustoni RP N° 1	RP N° 1 - Agustoni															0	0	#!DIV/0i	0	#¡DIV/0!
Acc. Ceballos RP №2	RP N° 2 -Ceballos															0	0	#¡DIV/0!	0	#¡DIV/0!
Acc. Trenel (N) RP N°4	RP Nº4 - Trenel															0	0	#:DIV/01	0	#iDIV/0!

COMPOSICIÓN Y TMDA 2015

#¡DIV/0! #¡DIV/0! #1DIV/0I VEH. PESADOS #¡DIV/0 #;DIV/0 28% 38% 43% 24% 23% 28% 27% 22% 19% 11% 21% 14% 12% 19% 32% 25% 269 184 209 169 153 151 94 92 0 89 20 29 #¡DN/0! #¡DN/0! #!DN/0! #₁DN/0! #¡DN/0! #iDN/0! #DN/0 #IDN/0 #¡DIV/0 #¡DN/0 VEH. LIVIANOS 73% 62% 57% 76% 77% 72% 73% %88 88% 83% 72% 89% 79% 86% %89 1298 1164 1845 1732 785 928 519 298 836 620 526 186 986 479 279 56 74 850 382 381 00 TMDA 2379 1445 1295 1173 838 525 1105 1105 804 735 563 428 2079 1467 474 470 236 538 352 65 109 402 0 0 0 0 Class 4 | Class 5 | Class 6 | Class 7 | Class 8 | Class 9 | Class 10 | Class 11 | Class 12 | Class 13 | Class 14 | 31 57 21 19 33 35 8 6 2 mas de 12 metros 88 33 32 36 33 1 48 7 0 36 105 86 9 9 192 108 95 Ξ 122 81 78 70 58 23 35 16 10 7 26 0 0 CLASES 10 9 2 2 13 ω က 2 116 76 123 65 4 4 69 29 4 39 21 7 61 87 51 hasta 12 metros 9 22 22 28 13 9 2 67 29 15 Class 3 motos autos camionetas 263 327 553 378 176 118 294 204 169 162 99 99 85 164 64 131 116 35 47 228 406 hasta 7metros Class 1 Class 2 1298 1164 515 589 1262 748 339 1287 653 533 411 244 234 255 225 213 338 159 442 26 12 တ္က 39 18 19 2 0 4 ω 0 04/11/2015 04/11/2015 05/11/2015 05/11/2015 28/05/2015 15/04/2015 15/04/2015 22/04/2015 17/04/2015 28/10/2015 29/04/2015 28/04/2015 18/11/2015 15/09/2015 19/11/2015 07/05/2015 05/05/2015 16/12/2015 21/04/2015 21/05/2015 23/04/2015 27/10/2015 27/05/2015 20/05/2015 FECHA

	motos	autos	camionetas	1															
FECHA								LASES									VIANOS		SADOS
26/11/2015	Class 1	Class 2	Class 3		Class 5		Class 7	Class 8					Class 13		TMDA	TMDA	%	TMDA	%
26/11/2015	11 8	764 571	273 248	3	4 6	69 50	3	- 8 9	25 26	0	9	2	0	0	1172 932	1048 827	89% 89%	124 124	11% 8%
25/11/2015	5	272	144	4	4	29	2	7	18	0	4	3	0	0	492	421	86%	71	14%
22/11/2015	2	231	145	6	4	33	1	8	18	0	3	3	0	0	454	378	83%	76	17%
24/11/2015	4	94	67	0	3	15	0	1	8	0	3	1	0	0	196	165	84%	31	16%
16/12/2015	2	6	14	6	2	61	0	1	0	0	0	0	0	0	92	22	24%	70	76%
13/05/2015	9	533	219	4	4	66	7	10	60	3	33	15	0	0	963	761	79%	202	21%
12/05/2015	4	331	146	5	4	33	6	12	38	2	28	15	0	0	624	481	77%	143	23%
															0	0	#¡DIV/0! #¡DIV/0!	0	#¡DIV/0! #¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
	13	619	203	5	4	40	0	2	41	2	29	10	0	0	968	835	86%	133	14%
16/07/2015	18	459	127	12	2	51	5	14	13	3	10	4	0	0	718	604	84%	114	16%
10/11/0015		hasta 7me	tros	ha	sta 12 met	ros				mas de 1					400	000	040/	00	00/
18/11/2015	7	368 218	94	4	13	28	0	9	11	1	5	5	0	1	406 384	368 319	91% 83%	38 65	9% 17%
17/11/2015 17/11/2015	7	324	138	0	1	30	0	9	14	1	5	4	0	1	534	469	88%	65	12%
	7	154	278	0	0	24	1	12	5	5	16	13	0	2	517	439	85%	78	15%
10/11/2015	0	38	60	4	0	4	0	1	2	0	0	0	0	0	109	98	90%	11	10%
10/11/2015	8	132	84	0	1	20	0	8	26	0	2	2	0	0	283	224	79%	59	21%
11/11/2015	7	313	184	1	0	35	1	4	23	1	3	1	0	0	573	504	88%	69	12%
12/11/2015	3	199	97	2	2	41	1	2	13	0	8	0	0	0	368	299	81%	69	19%
03/12/2015	7	457 457	148 148	0	3	58 58	1	4	17 17	4	23 23	19 19	0	2	743 743	612 612	82% 82%	131	18% 18%
04/12/2015	0	457 290	148 86	2	2	58 41	1	4	17	3	8	19 15	0	2	743 465	612 376	82% 81%	131 89	18%
09/06/2015	2	136	97	5	1	27	2	23	24	2	29	42	0	2	392	235	60%	157	40%
09/06/2015	1	145	93	3	0	22	2	24	23	2	28	41	0	2	386	239	62%	147	38%
															0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
11/06/2015	1	103	78	5	2	31	2	2	0	2	5	0	0	0	231	182	79%	49	21%
															0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0! #¡DIV/0!	0	#¡DIV/0! #¡DIV/0!
14/07/2015	0	3	5	2	0	1	0	0	0	0	0	0	0	0	11	8	73%	3	27%
01/12/2015	0	84	48	0	0	17	0	3	5	3	9	9	1	3	182	132	73%	50	27%
24/11/2015	3	208	128	5	3	36	0	3	29	1	3	0	0	0	419	339	81%	80	19%
02/12/2015	0	18	17	0	0	5	0	1	4	1	4	9	0	1	60	35	58%	25	42%
24/06/2015	0	62	60	1	6	16	0	10	12	2	13	14	0	0	196	122	62%	74	38%
04/06/2015	0	20	37	0	0	2	0	4	3	1	3	7	0	0	77	57	74%	20	26%
04/06/2015	0	25	27	1	0	0	0	4	2	0	2	8	0	0	69	52	75%	17	25%
															0	0	#¡DIV/0! #¡DIV/0!	0	#¡DIV/0! #¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
						 									0	0	#¡DIV/0!	0	#¡DIV/0!
	-	100	0.4	_	2	15	1	-	16	-	-	2		0	0	0	#¡DIV/0!	0	#¡DIV/0!
	5 10	180 388	84 184	5 10	2	15 86	1 6	3	16 29	3 0	5 12	3	2	0	322 737	269 582	84% 79%	53 155	16% 21%
	20	69	80	10	0	17	2	8	11	0	11	6	0	2	227	169	79%	58	26%
25/06/2015	0	78	92	1	1	18	0	1	8	5	10	17	0	0	231	170	74%	61	26%
25/06/2015	0	14	35	3	0	3	0	1	4	0	0	0	0	0	60	49	82%	11	18%
	16	410	240	5	4	58	4	8	23	3	35	29	0	0	835	666	80%	169	20%
	8	338	216	17	11	41	0	12	34	7	51	65	0	2	802	562	70%	240	30%
	22	224	242	2	0	35	0	9	1	0	8	1	0	0	544	488	90%	56	10%
03/06/2015	6	178	97	2	27	50	2	5	22	18	87	130	0	16	640	281	44%	359	56%
20/07/2015 22/07/2015	14	836 701	345 276	22 21	59 96	121 105	3 10	10	25 30	11 15	145 118	168 178	0	16	1766 1604	1195 990	68% 62%	571 614	32% 38%
03/06/2015	13 6	193	111	1	27	49	6	10 5	22	18	92	125	1	31 16	672	310	46%	362	54%
03/00/2013		155	- 111	<u>'</u>	- 21	40	U	J		10	32	120		10	0	0	#¡DIV/0!	0	#¡DIV/0!
															0	0	#¡DIV/0!	0	#¡DIV/0!
	6	357	185	1	3	42	1	6	36	2	11	5	0	0	655	548	84%	107	16%
	70	536	128	9	8	67	2	5	28	3	16	6	0	0	878	734	84%	144	16%
02/09/2015	18	1404	1081	11	17	278	19	9	12	7	64	31	0	5	2956	2503	85%	453	15%
02/06/2015	2	54	225	17	2	43	3	4	5	1	10	15	0	1	382	281	74%	101	26%
19/05/2015	95	1418	468	9	10	100	7	9	58	6	40	23	0	2	2245	1981	88%	264	12%
14/05/2015 07/05/2015	13 12	806 1621	339 523	11 9	4 24	75 171	7 8	17 13	99 59	7 11	22 48	17 14	0	0	1417 2513	1158 2156	82% 86%	259 357	18% 14%
07/05/2015	12	1021	523	У	24	1/1	В	13	59		48	14	U	U	∠ 513	Z 156	80%	ა5/	14%

EVOLUCIÓN DEL TRANSITO 1988-2011.

								Continued to the Continued of the Contin	-						
		_	Ruta: P001		Inicio: RP4	4	Fin	Fin: KM71.5	_	Prog.Inicial:	55,71		Prog.	Prog. Final: 71,50	,50
Año	T.M.D.A.	Au Je	Pick Up	B11	B12	C11	C12	C1111	C1112	C1212	C111	C112	C122	C113	C123
1988	737	220	139	11	0	68	16	20	159	0	61	15	80	22	0
1989	817	361	220	21	0	88	9	12	37	0	38	60	4	20	-
1992	1181	508	339	21	0	114	2	14	85	0	49	28	2	13	0
1993	2325	1.042	655	37	0	184	16	90	160	-	81	20	15	36	-
1994	1174	558	346	23	0	86	3	20	19	0	21	16	15	26	-
1995	1456	594	422	30	0	136	11	26	131	-	51	21	1	23	0
1996	1378	628	410	23	0	121	4	26	95	0	22	16	O	25	0
1997	1492	650	495	27	0	132	6	6	85	0	25	14	14	30	2
1998	1513	725	355	25	22	115	13	24	125	0	40	42	4	23	0
9	1491	629	544	24	2	122	7	23	68	0	4	22	2	32	0
0	1557	750	383	26	27	06	6	22	153	0	27	46	4	21	0
_	806	456	244	24	0	39	-	2	99	0	80	19	(1)	46	0
67	1143	488	436	24	0	74	2	6	92	0	60	80	-	12	0
	1596	774	364	63	37	30	51	20	141	0	15	18	23	61	0
**	1718	661	637	22	0	136	60	17	172	0	7	30	19	16	-
10	1869	799	640	28	0	116	80	28	157	-	7	35	10	44	0
"	1951	841	703	24	0	109	_	10	155	-	-	33	18	49	-
_	2078	820	734	25	0	144	10	27	213	0	4	33	00	57	60
~	1871	845	525	23	0	116	80	26	228	0	-	30	6	63	+-
2009	2107	1.028	691	n	16	125	4	7	128	0	-	17	0	77	0
0	1968	922	200	7	14	101	4	10	86	0	0	4	0	78	0
	1822	000	855	c	4.5	00	0	4	20	<	c		•		1

CENSO RUTAS PROVINCIALES

DATOS	ATOS AÑO 2013 - 2014		motos	autos	camionetas															
OUTA AID	Carrent	EECHA		100					O	ASES							VEH.	IMIA	VEH. P	PESADOS
NAIDA	INAMO	LECTA	Class 1	Class 2	Ciass 3	Class 4	Class 5 (Class 6	Class 7	Class 8	6	Class 10 Cla	Class 11 Clas	Class 12 Class 13	s 13 Class 14	-	A TMDA		TMDA	- %
RP N*1	RP Nº 2 - Gral, PICO	19/06/2013	36	1397	498	13	52	107	80	21	192	7	50 3	35 2		2392		81%		19%
RP Nº 1	Int. Alvear - RN N* 188	12/06/2013	42	631	346	12	23	91	3	18	215	9		28 0	0	145			-	30%
RP Nº 102	RN N* 35 - RP N* 7	30/04/2013	60	759	323	2	24	92	,	10	108	4		10 0	0	135	7 1085		272	20%
RP N° 102	RP N"7 - Gral, Pico	30/04/2013	14	1529	497	9	24	153	4	10	65	10	298	1 4	£.	236				14%

			Ruta: P004		Inicio: RP9	6	Fin:	Fin: RP11	4	Prog.Inicial: 113,72	d: 113,72		Prog. F	Prog. Final: 154,03	4,03
Año	T.M.D.A.	Au Je	Pick Up	B11	B12	C11	C12	C1111	C1112	C1212	C111	C112	C122	C113	C123
1988	316	105	106	-	0	34	-	80	47	0	00	2	+	-	0
1992	329	105	134	4	0	30	0	11	37	0	00	2	-	1	0
1993	484	140	231	9	0	20	0	15	24	0	17	2	0	0	0
1994	317	103	128	-	0	36	0	9	38	0	5	0	-	-	0
1995	413	148	189	4	0	31	0	12	13	0	12	4	0	0	J
1996	320	66	138	7	0	38	0	7	16	2	18	က	0	0	0
1997	406	126	186	-	0	38	0	9	19	0	31	-	0	-	_
1998	272	101	125	4	0	21	0	4	6	0	2	2	-	2	
1999	418	136	213	4	0	27	-	10	10	0	12	4	-	0	0
2000	263	83	142	4	0	15	2	4	7	0	es	က	0	0	0
2001	346	83	186	7	0	35	2	7	16	0	4	9	4	5	0
2002	443	132	226	ო	0	42	-	7	27	0	-	4	2	-	0
2003	278	91	118	0	0	17	ო	4	23	0	9	4	-	-	0
2004	473	123	210	7	0	46	က	13	28	0	4	တ	0	0	0
2005	404	129	185	7	0	33	2	1	23	-	-	10	2	2	0
2006	133	27	70	-	0	10	0	က	22	0	0	-	0	-	0
2007	404	167	189	9	0	23	က	4	7	0	0	2	0	0	0
2008	439	165	205	00	0	40	0	11	7	0	0	-	0	2	0
2009	414	138	165	ო	-	38	0	2	45	0	19	4	0	0	0
2011	440	108	192	e	0	96	c	C	14	C	C	7	C	7	

-					0	200	1	LYCEOGICAL HAMOND EN LA INE	2) I				
		O AT	Ruta: P018		Inicio: RP1	_	Fin	Fin: RP3		Prog.Inicial: 25,13	II: 25,13		Prog. F	Prog. Final: 40,17	,17
Año	T.M.D.A.	Au Je	Pick Up	B11	B12	C11	C12	C1111	C1112	C1212	C111	C112	C122	C113	C123
205	311	82	123	7	0	22	-	8	18	0	-	60	6	46	2
1989	441	131	165	10	0	44	4	12	30	0	10	80	7	21	_
1992	869	263	317	29	0	85	4	7	75	0	14	9	14	55	J
1993	572	171	193	00	0	47	2	15	49	0	6	80	23	48	0
1995	538	152	178	10	0	43	4	6	51	0	10	10	00	63	0
1996	591	166	198	6	0	49	-	10	26	0	13	12	18	56	
1997	534	100	181	9	0	52	-	2	54	0	52	7	5	75	0
1998	542	174	184	10	0	38	-	80	36	0	00	2	20	59	4
1999	383	130	169	10	0	22	-	-	13	0	-	1	10	27	_
2000	666	91	428	2	0	66	0	2	142	0	202	က	9	25	_
2001	200	91	205	11	0	39	~	4	52	0	46	9	11	33	
2002	300	72	129	2	0	19	-	9	21	-	-	က	00	34	7
5003	501	134	195	17	0	36	2	9	30	0	-	7	23	52	.,
5004	542	149	175	14	0	44	2	14	40	0	-	12	17	73	
5005	535	165	500	3	0	38	2	12	31	0	-	14	4	55	7
9008	664	231	261	10	0	36	3	10	37	0	3	10	4	22	***
2007	732	269	278	3	0	38	7	19	41	-	0	15	4	22	.,
2008	729	266	269	10	0	53	0	12	36	0	0	20	13	49	
2010	726	274	256	0	80	33	က	10	42	0	-	12	0	87	0
2011	590	233	208	c	ď	30	٢	u	38	0	c	ď	C	AA	0

SPECIFICATION OF ASSESSED															
			Ruta: P018		Inicio: MER V	R V	Fin:	Fin: RP1		Prog.Inicial:	00'0 :1		Prog. F	Prog. Final: 25,13	,13
Año	T.M.D.A.	Au Je	Pick Up	B11	B12	C11	C12	C1111	C1112	C1212	C111	C112	C122	C113	C123
1988	411	134	127	4	0	52	2	1	31	0	17	4	11	17	
1989	475	180	156	4	2	41	က	13	36	0	13	80	4	15	
1992	828	312	307	9	0	64	9	13	62	0	28	4	10	15	
1993	825	288	301	4	0	98	2	17	49	0	24	60	21	24	
1995	570	204	176	7	0	48	4	11	41	4	23	9	13	38	
1996	650	224	212	-	0	54	e	13	58	0	19	12	00	45	
1997	209	137	219	0	0	51	2	60	73	0	78	6	3	40	
1998	929	252	159	7	4	35	7	7	28	0	14	22	3	31	
1999	571	240	165	8	5	31	6	80	33	0	15	24	5	27	
2000	669	276	204	6	9	56	7	6	49	0	30	27	1	25	
2001	701	228	303	0	0	69	4	10	33	0	4	17	5	30	
2002	557	186	246	0	0	43	5	6	30	0	3	11	က	23	
2003	585	197	253	2	0	32	ო	14	42	0	e	15	80	19	
2004	624	267	195	17	4	32	12	80	33	0	13	21	œ	14	
2005	632	264	207	12	က	47	00	80	38	0	2	16	9	19	
2006	759	305	285	-	0	26	2	80	44	-	-	7	2	90	
2007	794	336	288	7	0	42	-	13	44	0	2	12	9	46	
2008	739	310	275	-	0	44	2	7	38	0	0	16	9	38	
2010	718	297	267	0	0	31	-	7	54	0	-	4	0	99	
2011	692	247	231	-		131	C	C	40	c	c	+	C	40	

			Ruta: P020		Inicio: RN143	143	Fin	Fin: RP17	4	Inicio: RN143 Fin: RP17 Prog.Inicial: 194,36	ıl: 194,36		Prog. F	Prog. Final: 246,87	5,87
Año	T.M.D.A.	Au Je	Pick Up	B11	B12	C11	C12	C1111	C1112	C1212	C111	C112	C122	C113	C123
1989	278	131	52	15	0	20	4	9	11	0	4	2	16	15	
1992	699	210	156	26	0	90	0	9	80	0	10	00	46	76	.,
1993	865	311	165	33	0	54	9	7	92	-	9	23	91	79	
1995	446	121	16	12	0	36	2	5	55	-	2	10	38	64	,
1996	546	172	101	20	0	30	2	6	99	0	6	16	40	80	
1997	504	221	06	12	0	22	-	3	90	0	က	2	30	70	,
1998	704	353	115	16	47	32	13	က	31	0	15	29	11	38	
1999	544	241	98	17	37	34	14	4	28	0	18	26	7	31	
00	717	410	114	17	34	29	11	2	21	0	7	27	80	36	
11	377	140	06	17	20	33	80	က	13	0	1	17	11	15	
02	395	166	53	16	o	27	9	2	9	0	00	11	77	13	
03	335	123	105	0	2	20	0	2	21	0	3	7	13	39	
04	584	233	153	35	16	17	31	21	25	4	7	16	23	4	0
05	581	275	137	21	14	37	11	5	13	0	17	18	4	28	0
2006	456	130	143	14	0	18	0	10	38	0	-	-	15	86	0
2008	811	369	236	13	0	15	0	80	20	0	0	10	30	104	6
2009	574	29	259	0	0	201	0	0	29	0	28	0	0	0	0
2010	557	230	146	-	7	23	c	c	18		0	6	C	120	6

			Ruta: P024		Inicio: MER V	ER V	Fin:	Fin: RP1	т	Prog.Inicial: 0,00	1: 0,00		Prog.	Prog. Final: 23,60	09'
Año	T.M.D.A.	Au Je	Pick Up	B11	B12	C11	C12	C1111	C1112	C1212	C111	C112	C122	C113	C123
1989	390	201	137	4	0	24	0	4	1	0	6	0	0	1	
1992	985	420	426	12	0	68	0	00	16	0	30	2	0	2	.4
1993	898	386	336	1	0	92	0	9	39	0	26	2	0	0	0
1995	511	124	211	2	0	58	0	2	45	0	64	2	0	0	0
1996	488	207	193	80	0	43	60	4	24	0	2	-	0	-	0
1997	909	207	216	5	0	38	-	7	26	0	2	5	0	2	J
1998	537	246	205	7	0	40	-	-	26	4	က	5	-	2	J
1999	535	212	227	80	0	58	0	eo	18	0	က	5	-	2	0
000	686	169	304	4	0	55	0	-	62	0	83	9	0	+	0
2001	454	214	185	7	0	26	0	က	00		2	7	0	3	0
2002	477	176	218	9	0	33	-	9	29	0	0	9	0	4	0
:003	422	140	191	2	0	39	0	7	20	0	2	13	0	2	0
004	545	216	278	4	0	29	-	7	9	-	0	2	0	3	0
900	613	271	235	00	0	54	2	9	27	0	0	9	0		0
900	202	201	230	-	0	20	-	3	17	0	0	-	0	3	0
200	306	118	119	0	80	16	0	10	20	0	0	0	0	9	0
800	1175	492	468	10	0	74	2	20	79	0	-	13	9	10	0
010	277	252	227	0	9	23	0	00	43	0	0	-	0	17	0
011	484	208	189	0	က	33	0	2	31	0	0	0	0	15	0

ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI

			Dirto: D402	3.5	Inicio. DD4	.004		Ein. VM13 7	1127		Drog Inicial.	or o .le	9	Dro	Drog Einal: 12 70	. 127	-
			Maia. F	70	25	- 14:		2	1,011		Tog.		2		. H. III al	10,0	,
Año	T.M.D.A.	. Au Je	e Pick Up	p B11	è	2	C11 C	C12 C	C1111	C1112	C1212	C111	C112	2 C122	2 C113		C123
1997	1535	749	9 504	1 37			140	-	10	49	0	15		10	-	19	0
1998	1852	863	3 709				133	4	10	72	-	10		10	7	14	0
2003	1445	586	16 621	30		0 10	104	2	16	54	0	-		9	3	19	0
2004	1555	746	6 545			0 12	126	9	16	38	~	-	1	15 1	12	25	0
2009	1683	593	3 565	0		6 13	139	9	6	241	1	111		5	0	6	0
		O.	Ruta: D402		Inicio: KM13.7	113.7	Ē	Fin: RP7		Pro	Prog.Inicial: 13,70	13,70		Prog. F	Prog. Final: 17,80	7,80	
2		-	Varia - F 104		-	7	6	04444		C4112 C	C1212 C	C111	C112	C122	C113	C123	
Año	T.M.D.A.	Au Je	Pick Up	B11	B12	5	212					4	10	-	19		0
1997	1535	749	504	37	0	140	- '		2 9	7 1	7	0 0	10	7	14		0
1998	1852	863	402	19	0	133	4		01	7/	- 0	2 4	9 (19		0
200	1445	586	621	30	0	104	2		16	54	0	-	0 !	9 (2 0		
2003	7 4	748	545	24	0	126	9		16	38	-	-	15	72	67		0 0
2004	1000	203	7 2	i	9	139	9	-	6	241	~	111	2	0	O		0

8 ANEXO II

Relevamiento: 11/7/2016 Ruta Provincial Nº1

RP 1 "A" KM

AHUELLAMIENTO: 10-15 FISURA: NO TIENE

POQUITO DE PELADURA

FALTA DE MARCACION HORIZONTAL

Coordenadas:X= 37°57'40.00"S, 63°36'50.10"O

RP 1 "B" KM 364

AHUELLAMIENTO: 10 FISURA: 8 EN HUELLA

Coordenadas: X= 37°58'40.80"S, 63°36'46.70"O

RP 1 "C" KM 366

AHUELLAMIENTO: 10 FISURA: NO SE OBSERVAN

POCO DE PELADURA DESPRENDIMIENTO DE BORDES

Coordenadas: 37°59'45.70"S, 63°36'49.70"O.

RP 1 "D" KM 368

AHUELLAMIENTO: 15 FISURA: NO SE OBSERVAN

POCO DE PELADURA EN HUELLA

Coordenadas: X= 38° 0'50.60"S, 63°36'49.10"O

RP 1 "E" KM 370

AHUELLAMIENTO: 15-20 PELADURA EN HUELLA

SIN DESPRENDIMIENTO DE BORDES

Oordenadas: X= 38° 1'55.60"S, 63°36'49.10"O.

RP 1 "F" KM 372

AHUELLAMIENTO: 10 PELADURA EN HUELLA

SIN DESPRENDIMIENTO DE BORDES

Coordenadas: X= 38° 3'0.90"S, 63°36'48.90"O.

RP 1 "G" KM 374

AHUELLAMIENTO: 20-25 FISURA: 8-10 EN HUELLA

Coordenadas: X= 38° 4'10.50"S, 63°36'48.80"O.

RP 1 "H" KM 376

AHUELLAMIENTO: 20-25 FISURA: 8 EN HUELLA,

Coordenadas: 38° 5'10.40"S, 63°36'48.50"O.

RP 1 "I" KM 372

AHUELLAMIENTO: 10

FISURA: NO SE OBSERVAN DESPRENDIMIENTO EN HUELLA

Coordenadas: 38° 6'15.10"S, 63°36'48.10"O.

RP 1 "J" KM 380

AHUELLAMIENTO: 15 FISURA: T. 6EN HUELLA

DESPRENDIMIENTO EN HUELLA

Coordenadas: 38° 7'20.00"S, 63°36'47.70"O...

RP 1 "K" KM 382

AHUELLAMIENTO: 15 FISURA: T.6 EN HUELLA

DESPRENDIMIENTO EN HUELLA.

Coordenadas: 38° 8'25.10"S, 63°36'47.70"O.

RP 1 "L" KM 384

AHUELLAMIENTO: 15 FISURA: 6 EN HUELLA

DESPRENDIMIENTO EN HUELLA

Coordenadas: 38° 9'30.10"S, 63°36'47.60"O.

RP 1 "M" KM 386

AHUELLAMIENTO: 10

DESPRENDIMIENTO EN HUELLA

Coordenadas: 38°10'34.70"S, 63°36'46.80"O.

RP 1 "N" KM 388

AHUELLAMIENTO: 15-20 FISURA: 8 EN HUELLA

Coordenadas: 38°11'39.90"S, 63°36'46.60"O.

RP 1 "O" KM 390

AHUELLAMIENTO: 15-20 FISURA: 8 EN HUELLA

Coordenadas: 38°12'44.60"S, 63°36'48.40"O.

RP 1 "P" KM 392

AHUELLAMIENTO: 10-15 FISURA: 8 EN HUELLA

Coordenadas: 38°13'49.70"S, 63°36'48.30"O.

RP 1 "Q" KM 394

AHUELLAMIENTO: 15 FISURA: 8 EN HUELLA

BACHEO: 0.3 M²

Coordenadas: 38°14'54.60"S, 63°36'48.30"O.

Ruta Provincial Nº 4 RUTA 4 (PICHI HUINCA DESPUES DEL CRUCE)

RP 4-1 (KM114)

AHUELLAMIENTO: 15

FISURA: 10

BACHE - BACHEO

Coordenadas 35°37'47.20"S, 64°29'41.20"O.

RP 4-2 (KM116)

AHUELLAMIENTO: 15

FISURA: 10

BACHE - BACHEO

Coordenadas 35°37'46.50"S, 64°31'1.10"O.

RP 4-3 (KM118)

AHUELLAMIENTO: 15

FISURA: 10

BACHE - BACHEO

Coordenadas :35°37'45.80"S, 64°32'18.00"O

RP 4-4 (KM120 CRUCE CALEUFUI)

AHUELLAMIENTO: 15

FISURA: 10

BACHE - BACHEO

Coordenadas 35°37'44.80"S, 64°33'40.70"O.

RP 4-5 (KM122)

CAMBIO DE PAVIMENTO AHUELLAMIENTO: 15

FISURA: 10

BACHE - BACHEO

CON DESPRENDIMIENTO DE BORDES Coordenadas: 35°37'46.40"S, 64°34'59.10"O

RP 4-6 (KM124)

AHUELLAMIENTO: 15

FISURA: 10

BACHE – BACHEO RUTA DE BORDES

Coordenadas: 35°37'45.60"S, 64°36'20.00"O.

RP 4-7 (KM126)

AHUELLAMIENTO: 15-20 FISURA: 10REFLEJAS

Coordenadas: 35°37'44.70"S, 64°37'40.90"O

RP 4-8 (KM128)

AHUELLAMIENTO: 15-20

FISURA: 10 REFLEJAS

DESPRENDIMIENTO DE BORDES

Coordenadas: 35°37'43.90"S, 64°39'3.20"O.

RP 4-9 (KM130)

AHUELLAMIENTO: 15 FISURA: 10 REFLEJAS

Coordenadas: 35°37'43.00"S, 35°37'43.00"S.

RP 4-10 (KM132)

AHUELLAMIENTO: 15-20

FISURA: 10

BACHE - BACHEO.

Coordenadas: 35°37'42.30"S, 64°41'39.20"O.

RP 4-11 (KM134)

AHUELLAMIENTO: 15 FISURA: 10 REFLEJA

DESPRENDIMIENTO DE BORDES.

Coordenadas: 35°37'37.70"S, 64°42'52.60"O.

RP 4-12 (KM136)

AHUELLAMIENTO: 15 FISURA: 10 REFLEJA BACHE – BACHEO.

Coordenadas: 35°37'37.90"S, 64°44'5.00"O.

RP 4-13 (KM138)

AHUELLAMIENTO: 10-15 FISURA: 10 REFLEJA.

Coordenadas: 35°37'37.00"S, 64°45'29.00"O.

RP 4-14 (KM140)

AHUELLAMIENTO: 15-20

FISURA: 10 REFLEJA BACHES – BACHEOS.

Coordenadas: 35°37'35.80"S, 64°46'52.40"O.

RP 4-15 (KM142)

AHUELLAMIENTO: 15-20 FISURA: 10 REFLEJA

BACHES.

Coordenadas: 35°37'35.80"S, 64°46'52.40"O.

RP 4-16 (KM144) A 10 KM FINAL

AHUELLAMIENTO: 15 -20 FISURA: 10 REFLEJA

DESPRENDIMIENTO DE BORDES.

Coordenadas: 35°37'35.90"S, 64°49'24.00"O.

RP 4-17 (KM146)

AHUELLAMIENTO: 15

FISURA: 10

BACHE - BACHEO.

Coordenadas: 35°37'34.40"S, 64°50'48.00"O.

RP 4-18 (KM148)

AHUELLAMIENTO: 15

FISURA: 10

BACHE - BACHEO.

Coordenadas: 35°37'33.20"S, 64°52'7.60"O.

RP 4-19 (KM150)

AHUELLAMIENTO: 15 FISURA: 10 REFLEJA RUGOSIDAD ALTA

BACHE

DEPRESIOIN EN CALZADA

Coordenadas: 35°37'31.70"S, 64°53'28.10"O.

RP 4-20 (KM152)

AHUELLAMIENTO: 15 -20 FISURA: 10 REFLEJA

DESPRENDIMIENTO DE BORDES.

Coordenadas: 35°37'30.80"S, 64°54'53.30"O.

RP 4-21 (KM154)

AHUELLAMIENTO: 20 - 25

FISURA: 10

FIN DEL TRAMO, CRUCE

RP 11.

Coordenadas: 35°37'30.00"S, 64°55'46.10"O

Ruta Provincial N° 4 (Tramo RN N°35 – RN N°P9)

RP4 - 1 - (KM 0 - COMIENZO EN RN35) KM 91

FISURA: 10

AHUELLAMIENTO: 15 BACHEO Y BACHE

Coordenadas: X=3636352.9654, Y=6056457.7579

FISURA: 10

AHUELLAMIENTO: 15

BACHEO

EN KM 94 DESAPARECE DEMARCACION HORIZONTAL

Coordenadas: X=3634342.6249, Y=6056509.8858

RP4 - 3 - (KM 95)

FISURA: NO SE OBSERVA

AHUELLAMIENTO: DESPRECIABLE

BACHES ABIERTO DESPRENDIMIENTO CAMBIA PAVIMENTO

Coordenadas: X=3632407.7756, Y=6056560.4376

CON DEMARCACION HORIZONTAL

RP4 - 4 - (KM 97)

FISURA: 10

AHUELLAMIENTO: 15

BACHEO

Coordenadas: X=3630327.1024, Y=6056621.9522

RP4 - 5 - (KM 99)

FISURA: 10

AHUELLAMIENTO: 15

BACHEO coordenadas: x=3628353.4756, Y=6056601.2815

RP4 - 6 - (KM 101)

FISURA: 10

AHUELLAMIENTO: 15

BACHEO

Coordenadas: X=3626318.0147, Y=6056655.0415

RP4 - 7 - (KM 103)

FISURA: 10

AHUELLAMIENTO: 15 BACHE - BACHEO

DESPRENDIMIENTO DE BORDES

Coordenadas: X=3624282.5918, Y=6056711.4181

RP4-8- (KM105)

FISURA: 10

AHUELLAMIENTO: 15 BACHE - BACHEO

CON DESPRENDIMIENTO Coordenadas: X=3622211.8898, Y=6056764.7302

RP4-9- (KM107)

FISURA: 10

AHUELLAMIENTO: 15 BACHE - BACHEO

CON DESPRENDIMIENTO coordenadas: X=3620284.6622, Y=6056818.7071

RP4-10- (KM109)

FISURA: 10

AHUELLAMIENTO: 15.

Coordenadas: X=3618286.8853, Y=6056867.0378

BACHE - BACHEO 500 M²

DESPRENDIMIENTO DE BORDES

RP4-11- (KM111)

FISURA: 10

AHUELLAMIENTO: 15 BACHE - BACHEO

Coordenadas: X=3616441.6628, Y=6057033.1557

RP4-12- (KM113)

FISURA: 10

AHUELLAMIENTO: 15 BACHE - BACHEO

Coordenadas: X=3614619.6480, Y=6057050.6182

CRUCE DE RUTA

Ruta Provincial N° 10

RP 10 (Tramo RPN°1 – RPN°7)

RP 10 - A (KM 0 GPS)

AHUELLAMIENTO: 15

FISURA: 10

DESCALCE DE BORDE DE BANQUINA FALTA DEMARCACION HORIZONTAL Coordenadas: 36°10'33.40"S, 63°30'2.50"O.

RP 10 - B (KM 2 - 12 POSTE KIL)

AHUELLAMIENTO: 20

FISURA: 10

Coordenadas: 36°10'33.80"S, 63°31'5.20"O

RP 10 - C(KM 4 - 14)

AHUELLAMIENTO: 20

FISURA: 10

DESCALCE DE BORDES DESPRENDIMIENTO

Coordenadas: 36°10'33.80"S, 63°32'25.80"O

RP 10 – D(KM 6 - 18)

AHUELLAMIENTO: 20

FISURA: 10

BACHE ABIERTO 5 M²

Coordenadas: 36°10'33.70"S, 63°33'49.10"O

RP 10 - E(KM 8 - 18)

AHUELLAMIENTO: 30

FISURA: 10

BACHE ABIERTO 3 M²

Coordenadas: 36°10'33.70"S, 63°35'6.00"O

RP 10 - F(KM 10 - 20)

AHUELLAMIENTO: 20 -25

FISURA: 10 BACHE 25 M²

Coordenadas: 36°10'33.80"S, 63°36'26.10"O

RP 10 - G (KM 12 - 22)

AHUELLAMIENTO: 20 -25

FISURA: 10

DESPRENDIMIENTO DE BORDES

BACHE 10 M²

Coordenadas: 36°10'33.60"S, 63°37'47.20"O

RP 10 – H (KM 14 - 24)

AHUELLAMIENTO: 15 - 20

FISURA: 10

DESPRENDIMIENTO DE BORDES

Coordenadas: 36°10'33.50"S, 63°39'7.90"O

RP 10 - I(KM 16 - 26)

AHUELLAMIENTO: 15 - 20

FISURA: 10

DESPRENDIMIENTO DE BORDES

BACHE 4 M²

Coordenadas: 36°10'33.40"S, 63°40'25.50"O

RP 10 - J(KM 18 - 28)

AHUELLAMIENTO: 20

FISURA: 10 CON DESPRENDIMIENTO

BACHE 3 M²

DESCALCE DE BORDES

Coordenadas: 36°10'33.20"S, 63°41'49.10"O

RP 10 - K (KM 20 - 30)

AHUELLAMIENTO: 20 - 25

FISURA: 10

BACHE ABIERTO 2000 M²

Coordenadas: 36°10'33.10"S, 63°43'5.80"O

RP 10 – L(KM 22 - 32)

AHUELLAMIENTO: 20

FISURA: 10

BACHE ABIERTO (350 * 400)

Coordenadas: 36°10'33.10"S, 63°44'29.90"O

RP 10 - M(KM 24 - 34)

AHUELLAMIENTO: 20

FISURA: 10 CON DESPRENDIMIENTO

BACHE 100 M²

Coordenadas: 36°10'32.80"S, 63°45'46.70"O

RP 10 - N(KM 26 - 36)

AHUELLAMIENTO: 10

FISURA: 6 INICIO DE CA

RPETA NUEVA KM 35 EN ADELANTE Coordenadas: 36°10'32", 63°46'30"

RP 10 - O(KM 28 - 38)

AHUELLAMIENTO: MENOR A 5 FISURA: NO SE OBSERVAN

Coordenadas: 36°10'24.30"S, 63°48'18.70"O

RP 10 - P(KM 30 - 40)

FIN DE CA

RPETA KM 41 (PKM) AHUELLAMIENTO: 15

FISURA: 10 BACHE 1500 M²

Coordenadas: 36°10'36.60"S, 63°49'28.20"O

RP 10 - Q (KM 32 - 42)

AHUELLAMIENTO: 10

FISURA: 10 CON DESPRENDIMIENTO DESPRENDIMIENTO DE BORDES

BACHE 4 M²

Coordenadas: 36°10'37.20"S, 63°51'3.80"O

RP 10 - R (KM 34 - 44)

AHUELLAMIENTO: 10 - 15 FISURA: NO SE OBSERVAN

BACHE 1000 M²

Coordenadas: 36°10'36.80"S, 63°52'23.90"O

RP 10 - S (KM 36 - 46)

AHUELLAMIENTO: 15 - 20

FISURA: 10

ROTURA DE BORDES

Coordenadas: 36°10'45.49", 63°53'40.64"

RP 10 - T(KM 38 - 48)

AHUELLAMIENTO: 15 - 20

FISURA: 10

ROTURA DE BORDES BACHE – BACHEO

Coordenadas: 36°10'36.30"S, 63°55'6.70"O

RP 10 - U(KM 40)

AHUELLAMIENTO: 30

FISURA: 10

DESPRENDIMIENTO DE BORDES

BACHE-BACHEO

Coordenadas: 36°10'36.00"S, 63°56'0.40"O.

Ruta Provincial N° 18

RP 18 (Tramo RP N°1 - RN N°35)

RP 18 – 1 KM 55 (GPS)

AHUELLAMIENTO: ENTRE 15 Y 20

FISURA: 10

Coordenadas: 37° 7'25.50"S, 63°40'27.50"O

RP 18 - 2KM 53

AHUELLAMIENTO: ENTRE 20 Y 25

FISURA: 10

FALTA DEMARCACION HORIZONTAL Coordenadas: 37° 7'26.30"S, 63°41'28.40"O

RP 18 - 3KM 51

AHUELLAMIENTO: 15

FISURA: 10.

Coordenadas: 37° 7'26.10"S, 63°42'44.80"O

RP 18 – 4KM 49

AHUELLAMIENTO: ENTRE 15 Y 20

FISURA: 10.

Coordenadas: 37° 7'25.80"S, 63°44'3.10"O

RP 18 - 5KM 47

AHUELLAMIENTO: ENTRE 15 Y 20

FISURA: 10 CON DESPRENDIMIENTO DE BLOQUE

Coordenadas: 37° 7'25.60"S, 63°45'41.10"O

RP 18 - 6KM 45 (GPS) - 35 (PK)

AHUELLAMIENTO: ENTRE 15 Y 20

FISURA: 10 CON DESPRENDIMIENTO DE BLOQUE

Coordenadas: 37° 7'25.20"S, 63°46'38.20"O

RP 18 - 7KM 43

AHUELLAMIENTO: ENTRE 20 Y 25

FISURA: 10 CON DESPRENDIMIENTO DE BLOQUE.

Coordenadas: 37° 7'21.40"S, 63°48'12.60"O

RP 18 - 8KM 41

AHUELLAMIENTO: MAYOR A 25

FISURA: 10

CRUCE DE RUTA

Coordenadas: 37° 7'18.00"S, 63°49'34.10"O.

RP 18 - 9KM 39

CAMBIO DE SUPERFICIE AHUELLAMIENTO: 10 INICIO DE FISURA DE 8- 10

Coordenadas: 37° 7'15.10"S, 63°50'49.00"O.

RP 18 - 10KM 37

AHUELLAMIENTO: 5 FISURA: NO HAY

FALTA DEMARCACION HORIZONTAL

2 BACHES DE 1 M2 CADA UNO.

Coordenadas: 37° 7'22.10"S, 63°52'9.50"O.

RP 18 – 11KM 35 (GPS) – 45 PK

AHUELLAMIENTO: 5 DESPRENDIMIENTO 7 M²

Coordenadas: 37° 7'35.80"S, 63°53'20.90"O.

RP 18 – 12KM 33

AHUELLAMIENTO: ENTRE 5 Y 10 DESPRENDIMIENTO DE CA RPETA EN HUELLA EXTERNA CRECIENTE Coordenadas: 37° 7'47.20"S, 63°54'52.50"O

RP 18 - 13KM 31

INICIO DE FISURA TIPO 8 BACHES ABIERTOS EN HUELLA EXTERNA A AMBOS LADOS AHUELLAMIENTO: 10

Coordenadas: 37° 7'59.10"S, 63°56'16.40"O

RP 18 - 14KM 29

AHUELLAMIENTO: ENTRE 5 Y 10

Coordenadas: 37° 7'58.30"S, 63°57'25.50"O.

RP 18 - 15KM 27

AHUELLAMIENTO: ENTRE 10 Y 15

Coordenadas: 37° 7'40.20"S, 63°58'45.20"O

RP 18 – 16 KM 25 (GPS) – KM 55 (PK)

AHUELLAMIENTO: ENTRE 5 Y 10

INICIO DE FISURA TIPO 8

Coordenadas: 37° 7'24.10"S, 63°59'55.70"O

RP 18 – 17KM 23

AHUELLAMIENTO: 10

FISURA: 8 – 10

Coordenadas: 37° 7'18.40"S, 64° 1'24.80"O

RP 18 - 18KM 21

AHUELLAMIENTO: 10

FISURA: 8 – 10

Coordenadas: 37° 7'17.90"S, 64° 2'46.40"O

RP 18 - 19KM 19

AHUELLAMIENTO: 15

FISURA: 8 – 10

Coordenadas: 37° 7'17.40"S, 64° 4'12.70"O

RP 18 - 20KM 17

AHUELLAMIENTO: 15

FISURA: 8 – 10

Coordenadas: 37° 7'17.00"S. 64° 5'27.90"O

RP 18 – 21KM 15

AHUELLAMIENTO: 15

FISURA: 8 – 10

Coordenadas: 37° 7'16.30"S, 64° 6'55.90"O.

RP 18 – 22KM 13

AHUELLAMIENTO: 10

FISURA: 8 – 10

Coordenadas: 37° 7'16.20"S, 64° 8'15.60"O.

RP 18 - 23KM 11

AHUELLAMIENTO: 10

FISURA: 8 - 10

EN TRAMOS BACHES

Coordenadas: 37° 7'15.90"S 64° 9'38.50"O.

RP 18 - 24KM 9

AHUELLAMIENTO: ENTRE 10 Y 15

FISURA: 8 – 10

Coordenadas: 37° 7'15.40"S, 64°11'10.80"O.

RP 18 - 25KM 7

AHUELLAMIENTO: ENTRE 10 Y 15

FISURA: 8 – 10

Coordenadas: 37° 7'15.00"S, 64°12'35.10"O.

RP 18 - 26KM 5

AHUELLAMIENTO: ENTRE 10 Y 15

FISURA: 8 – 10 BACHEO 10 M²

Coordenadas: 37° 7'13.80"S, 64°13'52.70"O.

RP 18 - 27KM 3

AHUELLAMIENTO: ENTRE 10 Y 15

FISURA: 8 – 10 BACHEO 10 M²

Coordenadas: 37° 7'13.00"S, 64°15'11.70"O

RP 18 - 28 KM 1

AHUELLAMIENTO: ENTRE 10 Y 15

FISURA: 8 – 10 BACHEO 10 M²

Coordenadas: 37° 7'12.60"S, 64°16'33.40"O.

Ruta Provincial Nº 20

LA PAMPA

RP 20 (Tramo RP N°17-RN N N°143)

RP 20 "A" KM 195 - 1220 A (GPS)

AHUELLAMIENTO: 15

FISURA: 8 – 10 GENERAL,

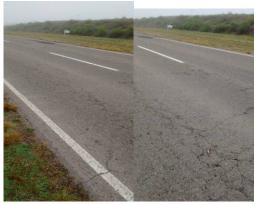
Coordenadas: 37°20'30.40"S, 65°41'20.30"O

RP 20 "B" KM 197

AHUELLAMIENTO: 12 FISURA: 8 – 10 GENERAL,

Coordenadas: 37°20'53.40"S, 65°42'33.60"O.

RP 20 "C" KM 199



AHUELLAMIENTO: 12 - 15

FISURA: 8 – 10 GENERAL.

Coordenadas: 37°21'17.10"S, 65°43'48.40"O

RP 20 "D" KM 201

AHUELLAMIENTO: 8 FISURA: 8 – 10 GENERAL BACHEO 1 M² PEL 10 * 3.5

Coordenadas: 37°21'40.70"S, 65°45'4.10"O.

RP 20 "E" KM 203

AHUELLAMIENTO: 10

FISURA: 10 GENERAL BACHEO 3 M².

Coordenadas: 37°21'40.70"S, 65°45'4.10"O.

RP 20 "F" KM 205

AHUELLAMIENTO: 6

FISURA: 10 GENERAL.

Coordenadas: 37°22'4.50"S, 65°46'19.60"O

RP 20 "G" KM 207

AHUELLAMIENTO: 5MM

FISURA: 6 GENERAL.

Coordenadas: 37°22'51.50"S, 65°48'49.90"O.

RP 20 "H" KM 209

AHUELLAMIENTO: 5MM

FISURA: 6 GENERAL

DESPRENDIMIENTO POR ENVEJECIMIENTO. Coordenadas: 37°23'15.60"S, 65°50'6.10"O.

RP 20 "I" KM 211

AHUELLAMIENTO: 10

FISURA: 8 – 10.

Coordenadas: 37°23'52.70"S, 65°51'9.00"O

RP 20 "J" KM 213

AHUELLAMIENTO: 5MM

FISURA: 8 - 10

BACHE

DESPRENDIMIENTO DE BLOQUE:

Coordenadas: 37°24'28.30"S, 65°52'7.90"O.

RP 20 "K" KM 215

AHUELLAMIENTO: 10

FISURA: 8

Coordenadas: 37°25'8.10"S, 65°53'19.70"O

RP 20 "L" KM 217

AHUELLAMIENTO: 5 FISURA: 8 – 10

Coordenadas: 37°25'37.90"S, 65°54'31.80"O.

RP 20 "M" KM 219

AHUELLAMIENTO: 8 FISURA: 8 – 10

Coordenadas: 37°26'7.90"S, 65°55'44.20"O.

RP 20 "N" KM 221

AHUELLAMIENTO: 12

FISURA: 8 - 10

Coordenadas: 37°26'37.70"S, 65°56'56.10"O

RP 20 "O" KM 223

AHUELLAMIENTO: 12

FISURA: 8 – 10.

Coordenadas: 37°27'7.20"S, 65°58'8.10"O.

RP 20 "P" KM 225

AHUELLAMIENTO: 20

FISURA: 6

Coordenadas: 37°27'36.90"S, 65°59'20.50"O.

RP 20 "Q" KM 227

AHUELLAMIENTO: 15

FISURA: 8.

Coordenadas: 37°28'6.60"S, 66° 0'33.30"O.

RP 20 "R" KM 229

AHUELLAMIENTO: 6

FISURA: 8,

Coordenadas: 37°28'36.30"S, 66° 1'45.50"O.

RP 20 "S" KM 231

AHUELLAMIENTO: 8

FISURA: 6

Coordenadas: 37°29'5.90"S, 66° 2'57.50"O

RP 20 "T" KM 233

AHUELLAMIENTO: 5

FISURA: 6

Coordenadas: 37°29'42.20"S, 66° 4'25.50"O.

RP 20 "U" KM 235

AHUELLAMIENTO: 5

FISURA: 6

Coordenadas: 37°30'5.30"S, 66° 5'21.50"O.

RP 20 "V" KM 237

AHUELLAMIENTO: 5

FISURA: 8

Coordenadas: 37°30'37.80"S, 66° 6'41.60"O.

RP 20 "W" KM 239

AHUELLAMIENTO: 5

FISURA: 8

Coordenadas: 37°31'1.40"S, 66° 7'48.50"O.

RP 20 "X" KM 241

AHUELLAMIENTO: 5

FISURA: 8

Coordenadas: 37°31'28.50"S, 66° 9'5.10"O.

RP 20 "Y" KM 243

AHUELLAMIENTO: 10

FISURA: 6 – 8

Coordenadas: 37°31'53.80"S, 66°10'17.10"O.

RP 20 "Z" KM 245

AHUELLAMIENTO: 5 - 6

FISURA: 6 – 8

Coordenadas: 37°32'19.81"S, 66°11'30.19"O.

RP 20 "AA" KM 247

AHUELLAMIENTO: 10

FISURA: 6

Coordenadas: 37°32'46.20"S, 66°12'46.40"O

Ruta Provincial Nº 24

RP Nº 24 (Tramo MERIDIANO V - Guatraché)

RP 24 "A" KM 0

AHUELLAMIENTO: 5 - 10

FISURA: 8.

Coordenadas: 37°39'29.10"S. 63°23'14.50"O.

RP 24 "B" KM 2

AHUELLAMIENTO: 5 - 10

FISURA: 8

Coordenadas: 37°39'20.81"S, 63°24'27.90"O.

ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI

RP 24 "C" KM 4

AHUELLAMIENTO: 5 - 10

FISURA: 8 BACHE 1.5 M².

Coordenadas: 37°39'21.50"S, 63°25'49.70"O.

RP 24 "D" KM 6

AHUELLAMIENTO: 5 FISURA: 8 – 10

Coordenadas: 37°39'21.70"S, 63°27'18.30"O.

RP 24 "E" KM 8

AHUELLAMIENTO: 5 - 10

FISURA: 8.

Coordenadas: 37°39'21.60"S, 63°28'32.50"O.

RP 24 "F" KM 10

AHUELLAMIENTO: 5 - 10

FISURA: 8

Coordenadas: 37°39'21.90"S, 63°29'52.90"O

ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI

RP 24 "G" KM 12

AHUELLAMIENTO: 5 - 10

FISURA: 8.

Coordenadas: 37°39'56.10"S. 63°30'38.70"O

9 ANEXO III

ESTUDIO GEOTÉCNICO

Distintos tramos Rutas de La Pampa

Provincia de la Pampa Argentina

RP N°1

INICIO: RN N°35

FIN: Salinas La Colorada

COMITENTE:

Córdoba, 9 de Setiembre de 2016

OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa			
CALICATA:	4-1			
LOCALIZACIÓN:	RPN°1			
COOORDENADAS	38° 00' 52,2" S			
COOORDENADAS	63° 36' 49,3" O			
EECHA:	19/08/2016			

Carpeta asfáltica: 3 cm de espesor.

Base: Tosca subangulosa con matriz de textura franco limosa color pardo claro y sin plasticidad. El porcentaje de matriz y de humedad aumentan hacia

Subase: Textura franco limosa pardo oscura, con escasa plasticidad y en estado ligeramente húmedo. Se encuentran distribuidos bloques de escaso tamaño.

Subrasante: limos arcillosos castaños escuros.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,8x0,9 Profundidad [m]: 1,04

Fotos:

Descripción

Croquis de estratos

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 19/08/2016

Estudio de la infraestructura para la mejora de la conectividad de la Provincia de Proyecto

Procedencia: La Pampa Muestra:

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W_1	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	3084	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1427,5	Peso de la arena sobrante (3)
W ₄ [gr] =	531,5	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 415,01 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

 $W_5 [gr] = 718$ Peso húmedo del suelo extraido en el agujero

Ppf[gr] = 3,24

Ppf + Psh [gr] = 163,34

Ppf +Pss [gr] = 137,5

w % = 19,25

 $\gamma_h = 1,73$ gr/cm³ gr/cm³ $\gamma_{\rm d} = 1,45$

OBRA:	Estudio de la	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa			
CALICATA:	C1-2	71-2			
LOCALIZACIÓN:	RPNº1	PN°1			
COOORDENADAS	38° 05' 13,5"	S			
COOORDENADAS	63° 36' 48,3"	0			
FECHA:	19/08/2016				

ECHA: 19/08/2016

Carpeta asfáltica: 3,5 cm de espesor.

Base: Tosca subangulosa con matriz sostén de textura franco limosa color pardo claro, con bajo contenido de humedad y sin plasticidad.

Subase: Textura franco limosa parda oscura, con escasa plasticidad y en estado húmedo.

Subrasante: limos arcillosos castaño escuro, con plasticidad media y contenido medio de húmedad.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,9x0,82 Profundidad [m]: 0,8

Fotos:

Descripción

Croquis de estratos

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 19/08/2016

Proyecto Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa

Procedencia: La Pampa Muestra: C1-2

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

I	γ _d arena [gr/cm ³]=	1,2807	
	$W_2 + W_{pf} [gr] =$	3344	Peso total de la arena (2)
	$W_3 + W_{pf} [gr] =$	1690,5	Peso de la arena sobrante (3)
I	W ₄ [gr] =	528,5	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 412,66 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

 W_5 [gr] = 726,5 Peso húmedo del suelo extraido en el agujero

Ppf [gr] = 3,17

Ppf + Psh [gr] = 186,78

Ppf +Pss [gr] = 159,8

w % = 17,23

 $\gamma_{h} = 1,76$ gr/cm³ $\gamma_{d} = 1,50$ gr/cm³

3 cm

OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa		
CALICATA:	C1-3		
LOCALIZACIÓN:	RPN°1		
COOORDENADAS	38° 09′ 34,7″ S		
COOORDENADAS	63° 36' 47,6" O		
FECHA:	21/08/2016		
	Croquis de estratos		

Carpeta asfáltica: 3 cm de espesor.

Base: Tosca con clastos angulosos (tamaños entre 1,5 y 5 cm) con matriz de textura franco limosa color parda oscura, se presenta en estado húmedo y sin plasticidad.

Subase: Tiene un espesor total de 60 cm y se divide en los siguientes estratos:

0,29-0,39 m: Material franco arenoso castaño oscuro. **0,39-0,49 m**: Capa de bloques con diámetros entre 15 y 25 cm. **0,49-0,74 m**: Material franco limoso castaño oscuro con pequeños bloques subangulosos.

Subrasante: Textura franco limosa castaño escuro y alto contenido de húmedad.

0,74-0,89 m: Arenas castañas oscuras relativamente humedas.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,8x0,8 Profundidad [m]: 0,93

Fotos:

Descripción

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 19/08/2016

Provecto Estudio de la infraestructura para la mejora de la conectividad de la Provincia de

 Proyecto
 La Pampa

 Procedencia:
 La Pampa

 Muestra:
 C1-3

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2778	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1333,5	Peso de la arena sobrante (3)
W ₄ [gr] =	319,5	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 249,47 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

W ₅ [gr] = 395,5	Peso húmedo del suelo extraido en el agujero
-----------------------------	--

Ppf[gr] = 3,23

Ppf + Psh [gr] = 194,83

Ppf +Pss [gr] = 170,91

w% = 14,27

 $\gamma_h = 1,59$ gr/cm³ $\gamma_d = 1,39$ gr/cm³

PLANILLA DE CALICATA OBRA: Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa CALICATA: C1-4 LOCALIZACIÓN: RPNº1 38° 13' 55,7" S COOORDENADAS 63° 36' 48,2" O FECHA: 21/08/2016 Croquis de estratos Carpeta asfáltica: 4,5 cm de espesor. 4.5 cm Base: Tosca con matriz de textura franco limosa color parda oscura, se presenta en estado seco y sin plasticidad. Descripción Subase: Textura franco limosa pardo oscura, con escasa plasticidad y en estado húmedo. Subrasante: Textura franco limosa castaño escuro y alto contenido de húmedad. DIMENSIONES DE LA CALICATA.

Diámetro [m]:

0,8x0,8

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:		Fecha:	21/08/2016
Proyecto	Estudio de la infraestructura para la mejora de La Pampa	la conectividad de la	a Provincia de
Procedencia:	La Pampa		
Mucetra	C1 4		

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2619,5	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1259,5	Peso de la arena sobrante (3)
W ₄ [gr] =	235	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))
		-

Vs = 183,49 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

$W_5 [gr] = 319$	Peso húmedo del suelo extraido en el agujero
------------------	--

Ppf [gr] = 3,2 Ppf + Psh [gr] = 164,87 Ppf +Pss [gr] = 146,25

w % = 13,02

 $\gamma_h = 1,74$ gr/cm³ $\gamma_d = 1,54$ gr/cm³

ESTUDIO GEOTÉCNICO

Distintos tramos Rutas de La Pampa

Provincia de la Pampa Argentina

RP N°4

INICIO: RN N°35 FIN: RP N°11

COMITENTE:

Córdoba, 9 de Setiembre de 2016

		PLANILLA DE CA	ALICATA
OBRA:	Estudio de	la infraestructura para la mejora de la conectividad de la Provincia d	de La Pampa
CALICATA:	C4-1		·
LOCALIZACIÓN:	RPNº4		
COOORDENADAS	35° 37' 31, 64° 54' 12.		
FECHA:	25/08/2016		
Descripción	Base: Tose claro, con Subase: A	sfáltica: 4 cm de espesor. ca con clastos angulosos con matriz de areno-limosa color pardo escasa plasticidad y en estado seco. urena limosa parda, sin plasticidad y húmeda.	Croquis de estratos 4 cm 26 cm - 0.25 m - 0.50 m
DIMENSIONES DE LA CALICATA. Diámetro [m]: 1,2x0,9 Profundidad [m]: 0,6 Fotos:		Observaciones: El ensayo del cono de arenas no se realizó dado que se alumbró el sustrato rocoso.	

Croquis de estratos

OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa
CALICATA:	C4-2
LOCALIZACIÓN:	RPN⁰4
COOORDENADAS	35° 37' 37,1" S
COOCKDENADAS	64° 47' 51,8" O
FECHA:	17/08/2016

Carpeta asfáltica: 4 cm de espesor.

Base: Tosca con clastos angulosos a subangulosas con matriz sostén de arenosa color pardo claro, sin plasticidad y bajo contenido de humedad.

Subase: Arena limosa parda oscura, levemente plástica y con baja humedad. Presenta escasos bloques redondeados.

Subrasante: Arenas limosas pardas, con humedad.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,9x1 Profundidad [m]: 1,2

Fotos:

Descripción

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 17/08/20

Proyecto

Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa

Procedencia: La Pampa Muestra: C4-2

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

I	γ _d arena [gr/cm ³]=	1,2807	
	$W_2 + W_{pf} [gr] =$	2950,5	Peso total de la arena (2)
	$W_3 + W_{pf} [gr] =$	1346	Peso de la arena sobrante (3)
I	W ₄ [gr] =	479,5	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 374,40 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

 W_5 [gr] = 735 Peso húmedo del suelo extraido en el agujero

Ppf [gr] = 3,21

Ppf + Psh [gr] = 176,39

Ppf +Pss [gr] = 152,32

w % = 16,14

 $\gamma_{h} = 1,96$ gr/cm³ $\gamma_{d} = 1,69$ gr/cm³

PLANILLA DE CALICATA OBRA: Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa CALICATA: C4-3 LOCALIZACIÓN: RPNº4 35° 37' 42,8" S COOORDENADAS 64° 41' 43,1" O FECHA: 17/08/2016 Croquis de estratos Carpeta asfáltica: 4 cm de espesor. Base: Tosca con clastos angulosos a subangulosas con matriz sostén de areno-limosa color pardo claro y sin plasticidad. Descripción Subase: Arena limosa parda oscura, sin plásticidad. Subrasante: Limos arcillosos pardos y levemente humedos.

Profundidad [m]: Fotos:

Diámetro [m]:

DIMENSIONES DE LA CALICATA.

0,8x0,8

0,84

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:		Fecha:	17/08/2016
Proyecto	Estudio de la infraestructura para la mejora de la La Pampa	conectividad de l	a Provincia de
Procedencia:	La Pampa		
Muestra:	C4-3		

Muestra:

Datos del cono:				
Vc [gr]	= 856,16	Volumen del cono (cm3)		
W₁ [ar]	= 1125	Peso de la arena en el cono (1)		

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	3215,5	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1519	Peso de la arena sobrante (3)
W ₄ [gr] =	571,5	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))
		-

Vs = 446,24 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

 $W_5[gr] = 775,5$ Peso húmedo del suelo extraido en el agujero

Ppf [gr] = 3,22 Ppf + Psh [gr] = 216,28 Ppf +Pss [gr] = 184,7

w % = 17,40

 $\gamma_h = 1,74$ gr/cm³ $\gamma_d = 1,48$ gr/cm³

OBRA: Estudio de		infraestructura para la mejora de la conectividad de la Provincia de La Pampa
CALICATA: C4-4		
LOCALIZACIÓN:	RPNº4	
COOORDENADAS	35° 37' 46,1"	S
COCONDENADAO	64° 35' 23,8"	0
FECHA:	25/08/2016	

Carpeta asfáltica: 3,5 cm de espesor.

Base: Tosca con clastos angulosos con matriz sostén de areno-limosa color

pardo claro, sin plasticidad y en estado húmedo.

Subase: Arena limosa parda oscura, levemente plástica y húmeda.

Subrasante: Limos arcillosos pardos oscuros con baja plasticidad.

DIMENSIONES DE LA CALICATA.

088x0,70 Diámetro [m]: Profundidad [m]: 0,7

Fotos:

Descripción

Croquis de estratos

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 25/08/2016

Estudio de la infraestructura para la mejora de la conectividad de la Provincia de Proyecto

La Pampa Procedencia: La Pampa Muestra:

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W_1	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2717	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1352	Peso de la arena sobrante (3)
W ₄ [gr] =	240	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 187,40 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

 $W_5 [gr] = 380$ Peso húmedo del suelo extraido en el agujero

Ppf[gr] = 3,21

Ppf + Psh [gr] = 181,76

Ppf +Pss [gr] = 158,81

w% = 14,75

 $\gamma_{h} = 2,03$ gr/cm³ $\gamma_{\rm d} = 1,77$ gr/cm³

DBRA: Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa CALICATA: C4-5 LOCALIZACIÓN: RPNº4 COOORDENADAS 35° 37' 47,7" S 64° 29' 05,6" O FECHA: 17/08/2016 Carpeta asfáltica: 4 cm de espesor.

Base: Tosca con clastos angulosos con matriz sostén de areno-limosa color pardo claro, sin plasticidad.

Descripción

Subase: Limos arenosos de color pardo, con baja plasticidad.

Subrasante: Limos arcillosos pardos oscuros con baja plasticidad.

30 cm 8 cm - 50 m

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,8x0,8 Profundidad [m]: 0,73

Fotos:

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:		Fecha:	17/08/2016
Proyecto	Estudio de la infraestructura para la mejora de la	conectividad de la	Provincia de
	La Pampa		

Procedencia: La Pampa
Muestra: C4-5

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W_1	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

I	γ _d arena [gr/cm ³]=	1,2807	
	$W_2 + W_{pf} [gr] =$	3596,5	Peso total de la arena (2)
I	$W_3 + W_{pf} [gr] =$	2021,5	Peso de la arena sobrante (3)
	W ₄ [gr] =	450	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))
ı			

Vs = 351,37 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

$W_5 [gr] = 6$	36	Peso húmedo del suelo extraido en el agujero
----------------	----	--

Ppf[gr] = 3,21Ppf + Psh[gr] = 170,13

Ppf +Pss [gr] = 142,85

w % = 19,54

 $\gamma_h = 1.81$ gr/cm³ $\gamma_d = 1.51$ gr/cm³

Croquis de estratos

4.5 cm

13 cm

OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa
CALICATA:	C4-6
LOCALIZACIÓN: RPNº4	
COOORDENADAS	35° 38' 17,0" S
COOORDENADAS	64° 22' 56,4" O
FECHA:	17/08/2016

Carpeta asfáltica: 4,5 cm de espesor.

Base: Tosca con clastos subangulosos con matriz sostén de areno-limosa

color pardo claro.

Subase: Limos arenosos de color pardo oscuro en estado húmedo.

Subrasante: Limos arcillosos pardos oscuros, con plasticidad y leve

numedad.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,8x0,8 Profundidad [m]: 0,92

Fotos:

Descripción

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 17/08/20

Proyecto Estudio de la infraestructura para la mejora de la conectividad de la Provincia de

Proyecto
La Pampa
Procedencia: La Pampa
Muestra: C4-6

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

I	γ _d arena [gr/cm ³]=	1,2807	
I	$W_2 + W_{pf} [gr] =$	3760	Peso total de la arena (2)
I	$W_3 + W_{pf} [gr] =$	1794	Peso de la arena sobrante (3)
I	W ₄ [gr] =	841	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 656,67 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

W₅ [gr] = 940,03 Peso húmedo del suelo extraido en el agujero

Ppf[gr] = 3,21

Ppf + Psh [gr] = 192,65

Ppf +Pss [gr] = 157,26

w % = 22,97

 $\gamma_h = 1,43$ gr/cm³ $\gamma_d = 1,16$ gr/cm³

OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa
CALICATA:	C4-7
LOCALIZACIÓN:	RPN°4
COOORDENADAS	35° 40' 35,6" S
	64° 17' 27,4" O
FECHA:	16/08/2016

Carpeta asfáltica: 3,5 cm de espesor.

Base: Tosca con clastos subangulosos a angulosos con matriz limosa color pardo claro, sin plasticidad.

Subase: Arenas limosas de color pardo oscuro sin plasticidad aparente.

Subrasante: Limos arcillosos pardos oscuros, con plasticidad y leve

Croquis de estratos 3.5 cm 41 cm 25 m 30 cm

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,6x0,6 Profundidad [m]: 1,15

Descripción

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 16/08/2016

Proyecto Estudio de la infraestructura para la mejora de la conectividad de la Provincia de la P

Proyecto
La Pampa
Procedencia: La Pampa
Muestra: C4-7

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W_1 [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	4006	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	886,5	Peso de la arena sobrante (3)
W ₄ [gr] =	2011,5	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 1570,63 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

 W_5 [gr] = 2410 Peso húmedo del suelo extraido en el agujero

Ppf[gr] = 3,21Ppf + Psh[gr] = 192,27

Ppf +Pss [gr] = 162,01

w % = 19,06

 γ_h = 1,53 gr/cm³ γ_d = 1,29 gr/cm³

ESTUDIO GEOTÉCNICO

Distintos tramos Rutas de La Pampa

Provincia de la Pampa Argentina

RP N°10

INICIO: RP N°1 FIN: RP N°7

COMITENTE:

Córdoba, 9 de Setiembre de 2016

		PLANILLA DE CA	ALICATA
OBRA:	Estudio de la	infraestructura para la mejora de la conectividad de la Provincia d	de La Pampa
CALICATA:	C10-1		
LOCALIZACIÓN:	RPNº10		
COOORDENADAS	36° 10' 37,2" 63° 51' 55,7"		
FECHA:	24/08/2016		
De scripción	Base: Tosca claro, sin pla Subase: Are humedas.	áltica: 2,5 cm de espesor. con clastos subangulosos con matriz areno-limosa color pardo sticidad y en estado seco. nas limosas de color pardas oscuras con baja plasticidad y Arenas limosas de color pardas oscuras con escasa plasticidad	Croquis de estratos 2.5 cm 30 cm 8 cm - 50 m
DIMENSIONES DE L	A CALICATA.		
Diámetro [m]: 1x	0,9		

Profundidad [m]: 0,62

Fotos:

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:		Fecha:	24/08/2016
Proyecto	Estudio de la infraestructura para la mejora de La Pampa	la conectividad de la	a Provincia de

Proyecto La Pampa Procedencia: C10-1 Muestra:

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2958	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1506	Peso de la arena sobrante (3)
W ₄ [gr] =	327	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 255,33 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

W ₅ [gr] = 457	Peso húmedo del suelo extraido en el agujero
---------------------------	--

Ppf [gr] = 3,34

Ppf + Psh [gr] = 192,78

Ppf +Pss [gr] = 169,82

w % = 13,79

gr/cm³ gr/cm³ $\gamma_{h} = 1,79$ γ_d = 1,57

		PLANILLA DE CA	ALICATA			
OBRA:	Estudio de	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa				
CALICATA:	C10-2		•			
LOCALIZACIÓN:	RPNº10					
COOORDENADAS		36° 10' 33,5" S 63° 46' 11,3" O				
FECHA:	24/08/2016					
Descripción	Base: Tosc claro, sin p Subase: A húmedo.	a con clastos subangulosos con matriz areno-limosa color pardo asticidad y levemente húmeda. renas limosas de color pardo con escasa plasticidad y en estado e: Sustrato rocoso	Croquis de estratos 3.5 cm 30 cm - 25 m - 50 m			
	A CALICATA. 95x0,7 88	Observaciones: El ensayo del cono de arenas no se realizó dado que se alumbró el sustrato rocoso.				

PLANILLA DE CALICATA OBRA: Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa CALICATA: LOCALIZACIÓN: RPNº10 36° 10' 33,6" S COOORDENADAS 63° 40' 08,9" O FECHA: 24/08/2016 Croquis de estratos Carpeta asfáltica: 4 cm de espesor. Base: Tosca con clastos angulosos con matriz areno-limosa color pardo claro, y en estado seco. Descripción Subase: Arenas limosas de color pardo oscuro con escasa plasticidad y en estado húmedo. Subrasante: Arenas limosas pardas oscuras, con escasa plasticidad y

Diámetro [m]:

DIMENSIONES DE LA CALICATA.

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:		Fecha:	24/08/2016
Proyecto	Estudio de la infraestructura para la mejora de la	a conectividad de l	a Provincia de
Procedencia:	La Pampa La Pampa		
Muoetra:	C10-3		

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

I	γ _d arena [gr/cm ³]=	1,2807	
	$W_2 + W_{pf} [gr] =$	2899,5	Peso total de la arena (2)
I	$W_3 + W_{pf} [gr] =$	1401	Peso de la arena sobrante (3)
	W ₄ [gr] =	373,5	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))
ı			

Vs = 291,64 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

$W_5 [gr] = 458$	Peso húmedo del suelo extraido en el agujero
------------------	--

Ppf [gr] = 3,2 Ppf + Psh [gr] = 171,42 Ppf +Pss [gr] = 150,94

w % = 13,86

 $\gamma_h = 1,57$ gr/cm³ $\gamma_d = 1,38$ gr/cm³

PLANILLA DE CALICATA OBRA: Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa CALICATA: C10-4 LOCALIZACIÓN: RPNº10 35° 10' 34,0" S COOORDENADAS 63° 34' 05,8" O FECHA: 16/08/2016 Croquis de estratos Carpeta asfáltica: 3 cm de espesor. 3 cm Base: Tosca con clastos angulosos con matriz areno-limosa color pardo claro, sin plasticidad y en estado seco. Descripción Subase: Arenas limosas de color pardo oscuro con escasa plasticidad y en estado húmedo. Subrasante: Arenas limosas pardas, con escasa plasticidad y humedas. DIMENSIONES DE LA CALICATA.

Profundidad [m]: Fotos:

Diámetro [m]:

1,1x0,9

1,1

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:		Fecha:	24/08/2016
Proyecto	Estudio de la infraestructura para la mejora de la La Pampa	conectividad de la	Provincia de
Procedencia:	La Pampa		
Muestra:	C10-4		

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2813,5	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	926	Peso de la arena sobrante (3)
W ₄ [gr] =	762,5	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 595,38 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

$W_5 [gr] = 1034$	Peso húmedo del suelo extraido en el agujero
-------------------	--

Ppf [gr] = 3,2 Ppf + Psh [gr] = 202,39 Ppf +Pss [gr] = 188,47

w % = 7,51

 $\gamma_h = 1,74$ gr/cm³ $\gamma_d = 1,62$ gr/cm³

ESTUDIO GEOTÉCNICO

Distintos tramos Rutas de La Pampa

Provincia de la Pampa Argentina

RP N°18

INICIO: RN N°35

FIN: RP N°1

COMITENTE:

Córdoba, 9 de Setiembre de 2016

OBRA:	Estudio de la	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa	
CALICATA:	C18-1	C18-1	
LOCALIZACIÓN:	RPNº18		
COOORDENADAS	37° 07' 14,9"	S	
	64° 13' 40,5"	0	
FECHA:	20/08/2016		

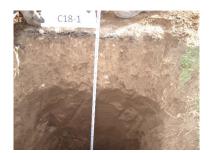
Carpeta asfáltica: 3,5 cm de espesor.

Base: Tosca angulosa (2-4 cm de \varnothing) con matriz de textura franco limosa color pardo claro, sin plasticidad.

Descripción

Subase: Arena limosa parda oscura, con escasa plasticidad y en estado

húmedo.


Subrasante: Arenas limosas castañas escuras, con escasa plasticidad.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,9x0,85 Profundidad [m]: 1,3

Fotos:

Croquis de estratos

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 20/08/2016

Estudio de la infraestructura para la mejora de la conectividad de la Provincia de Proyecto

La Pampa Procedencia: La Pampa Muestra: C18-1

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W_1	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2693,5	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1261,29	Peso de la arena sobrante (3)
W ₄ [gr] =	307,21	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 239,88 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

 $W_5 [gr] = 415$ Peso húmedo del suelo extraido en el agujero

Ppf[gr] = 3,2

Ppf + Psh [gr] = 164,4

Ppf +Pss [gr] = 141,73

w% = 16,36

 $\gamma_{\rm d} = 1,49$ $\gamma_{h} = 1,73$ gr/cm³ gr/cm³

OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa		
CALICATA:	C18-2		
LOCALIZACIÓN:	RP№18		
COOORDENADAS	37° 07' 16,7" S		
COOORDENADAS	64° 07' 33,4" O		
FECHA:	20/08/2016		

Carpeta asfáltica: 4 cm de espesor.

 $\textbf{Base:} \ \ \text{Tosca subangulosa} \ \ (2\text{-}5 \ \text{cm de } \varnothing) \ \text{con matriz de textura franco limosa} \\ \ \ \text{color pardo claro, en estado húmedo y sin plasticidad.}$

Subase: Textura franco limosa parda oscura, con escasa plasticidad y en estado húmedo.

Subrasante: Arenas limosas castañas escuras, con escasa plasticidad.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,97x0,85 Profundidad [m]: 0,72

Fotos:

Descripción

Croquis de estratos

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 20/08/2016

Proyecto Estudio de la infraestructura para la mejora de la conectividad de la Provincia de

Proyecto
La Pampa
Procedencia: La Pampa
Muestra: C18-2

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W_1	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

ı	γ _d arena [gr/cm ³]=	1,2807	
	$W_2 + W_{pf} [gr] =$	2085	Peso total de la arena (2)
I	$W_3 + W_{pf} [gr] =$	452,6	Peso de la arena sobrante (3)
	W ₄ [gr] =	507,5	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))
ı			-

Vs = 396,27 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

 $W_5[gr] = 670,5$ Peso húmedo del suelo extraido en el agujero

Ppf [gr] = 3,22

Ppf + Psh [gr] = 213,02

Ppf +Pss [gr] = 179,76

w % = 18,84

 $\gamma_h = 1,69$ gr/cm³ $\gamma_d = 1,42$ gr/cm³

		PLANILLA DE CALICATA			
OBRA:	Estudio de l	a infraestructura para la mejora de la conectividad de la Provincia de	e La Pampa		
CALICATA:	C18-3	· •	·		
LOCALIZACIÓN:	RP№18				
COOORDENADAS	37° 07' 18,8 64° 01' 28,3				
FECHA:	20/08/2016				
Descripción	Base: Tosc y en estado	fáltica: 6 cm de espesor. as angulosas con matriz arono-limosa parda clara, sin plasticidad húmedo. ena limosa parda oscura con baja plasticidad y humeda.	Croquis de estratos 6 cm 20 cm - 0 m - 0.28 m - 0.50 m		
		Sustrato rocoso. Observaciones: No se realizó el ensayo del cono debido a que se alumbró el sustrato rocosa.			

Fotos:

	PLANILLA DE CALICATA				
OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia	de La Pampa			
CALICATA:	C18-4	•			
LOCALIZACIÓN:	RPNº18				
COOORDENADAS	37° 07' 18,8" S 64° 01' 28,3" O				
FECHA:	21/08/2016				
Descripción	Carpeta asfáltica: 7 cm de espesor. Base: Toscas angulosas (2-4 cm de Ø) con matriz areno limosa con baja plasticidad y en estado húmedo. Subase: Arena limosa parda con baja plasticidad.	Croquis de estratos 7 cm 35 cm - 0.25 m - 0.50 m			
	Subrasante: Limos arcillosos pardos oscuros.	75 cm — 1 m			
DIMENSIONES DE L Diámetro [m]: 0,9 Profundidad [m]: 1,2	95x0,85				

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:		Fecha:	21/08/2016
Proyecto	Estudio de la infraestructura para la mejora de la La Pampa	a conectividad de la	a Provincia de
Procedencia:	La Pampa		

Procedencia: La Pampa Muestra: C18-4

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	3334	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1894	Peso de la arena sobrante (3)
W ₄ [gr] =	315	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 245,96 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

$W_5 [gr] = 414,5$	Peso húmedo del suelo extraido en el agujero
--------------------	--

Ppf [gr] = 3,22 Ppf + Psh [gr] = 179,49

Ppf +Pss [gr] = 154,13

w % = 16,80

 $\gamma_h = 1,69$ gr/cm³ $\gamma_d = 1,44$ gr/cm³

	PLANILLA DE CA	ALICATA
Estudio de la	a infraestructura para la mejora de la conectividad de la Provincia de	e La Pampa
C18-5	· · · · · · · · · · · · · · · · · · ·	·
RP№18		
· · · · · · · · · · · · · · · · · · ·		
21/08/2016		
		Croquis de estratos
baja plasticion Subase: Arc húmedo. Se	dad y en estado húmedo. ena limosa parda oscura con escasa plasticidad y en estado encuentran alternancias de finas capas más limosas de 1 a 5 cm	— 135 m
		- t=
LICATA.	Observaciones: El ensayo del cono no se pudo realizar por encontrarse el nivel freático en la subrasante.	Ţ 188m
	C18-5 RPNº18 37º 07' 18,7" 63º 49' 28,4" 21/08/2016 Carpeta asf Base: Tosca baja plasticio Subase: Are húmedo. Se de espesor i Subrasante medianamer	RPNº18 37º 07' 18,7" S 63º 49' 28,4" O 21/08/2016 Carpeta asfáltica: 6,5 cm de espesor. Base: Toscas angulosas (>25 cm de Ø) parda con matriz areno limosa con baja plasticidad y en estado húmedo. Subase: Arena limosa parda oscura con escasa plasticidad y en estado húmedo. Se encuentran alternancias de finas capas más limosas de 1 a 5 cm de espesor intercaladas dentro del perfil. Subrasante: Limos arcillosos pardos oscuros, muy húmedos y con medianamente plásticos. (Se encuentra anegado en las cercanías de las banquinas). LICATA. Observaciones: El ensayo del cono no se pudo realizar por

		PLANILLA DE CA	LICATA
BRA:	Estudio de	la infraestructura para la mejora de la conectividad de la Provincia de	e La Pampa
ALICATA:	C18-6		
OCALIZACIÓN:	RP№18		
COOORDENADAS	37° 07' 26,4 63° 43' 17,3		
ECHA:	21/08/2016		
	Base: Grav	sfáltica: 10 cm de espesor. as angulosas con matriz arono-limosa parda oscura, sin plasticidad	Croquis de estratos 10 cm 28 cm - 0.25 m
Descripción		o húmedo. rena limosa parda oscura con escasa plasticidad y humedad n profundidad.	— 0.50 m
	Subrasant	e: La subrasante se encuentra debajo del nivel freático.	60 cm
		Observaciones: El ensayo del cono no se pudo realizar por encontrarse el nivel freático en la subrasante.	— 1m

ESTUDIO GEOTÉCNICO

Distintos tramos Rutas de La Pampa

Provincia de la Pampa Argentina

RP N°20

INICIO: RN N°143 (Chacharramendi)

FIN: RP N°17 (La Reforma)

COMITENTE:

Córdoba, 9 de Setiembre de 2016

OBRA: Estudio de		infraestructura para la mejora de la conectividad de la Provincia de La Pampa
CALICATA: C20-1		
LOCALIZACIÓN: RPNº20		
COOORDENADAS	37° 31' 44,4" 66° 09' 50,2"	
22/09/2016		

23/08/2016

Carpeta asfáltica: 5,5 cm de espesor.

Base: Tosca con matriz de areno-limosa color pardo claro, sin plasticidad.

Descripción

Subase: Arena limosa parda rojizo, con escasa plasticidad.

Subrasante: Limos arcillosos castañas rojizos, con plasticidad media y estado húmedo a muy húmedo.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 1x1,1 Profundidad [m]: 0,94

Fotos:

Croquis de estratos

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 23/08/2016

Estudio de la infraestructura para la mejora de la conectividad de la Provincia de Proyecto

La Pampa Procedencia: La Pampa Muestra: C20-1

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W ₁ [gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	3032	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1600	Peso de la arena sobrante (3)
W ₄ [gr] =	307	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 239,71 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

 $W_5 [gr] = 434$ Peso húmedo del suelo extraido en el agujero

Ppf[gr] = 3,23

Ppf + Psh [gr] = 199,27

Ppf +Pss [gr] = 175,31

w % = 13,92

 $\gamma_{h} = 1,81$ gr/cm³ $\gamma_{\rm d} = 1,59$ gr/cm³

PLANILLA DE CALICATA OBRA: Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa CALICATA: LOCALIZACIÓN: RPNº20 37° 29' 46,3" S COOORDENADAS 66° 04' 35,5" O FECHA: 23/08/2016 Croquis de estratos Carpeta asfáltica: 5 cm de espesor. Base: Tosca con clastos subangulosos con matriz de areno-limosa color pardo claro, sin plasticidad. Descripción Subase: Arena limosa parda oscura, con baja plasticidad y en estado húmedo. Subrasante: Arenas limosas castaños oscuras con escasa plasticidad. DIMENSIONES DE LA CALICATA.

Diámetro [m]: 1x1

Profundidad [m]: 0,87

Fotos:

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:		Fecha:	23/08/2016
Proyecto	Estudio de la infraestructura para la mejora de la	conectividad de la	a Provincia de
	La Pampa		

Procedencia: La Pampa Muestra: C20-2

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W ₁	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	3161	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1785	Peso de la arena sobrante (3)
W ₄ [gr] =	251	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))
		-

Vs = 195,99 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

$W_5 [gr] = 339$	Peso húmedo del suelo extraido en el agujero
------------------	--

Ppf[gr] = 3,2Ppf + Psh[gr] = 187,63

Ppf +Pss [gr] = 154,55

w % = 21,86

 $\gamma_h = 1,73$ gr/cm³ $\gamma_d = 1,42$ gr/cm³

OBRA:	BRA: Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa	
CALICATA: C20-3		
LOCALIZACIÓN:	RPN°20	
COOORDENADAS	37° 27′ 39,5″ S	
COOORDENADAS	66° 59′ 27″ O	
FECHA:	23/08/2016	

Carpeta asfáltica: 4,5 cm de espesor.

Base: Tosca con clastos angulosos con matriz de areno-limosa color pardo, escasa plasticidad y húmeda.

Descripción
Subase: Arena limosa parda oscura, con baja plasticidad y en estado

húmedo.

Subrasante: Arenas limosas castaños oscuras con escasa plasticidad.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 1,2x1 Profundidad [m]: 0,85

Fotos:

Croquis de estratos

19 cm

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 23/08/2016

Proyecto Estudio de la infraestructura para la mejora de la conectividad de la Provincia de

Proyecto
La Pampa
Procedencia: La Pampa
Muestra: C20-3

Datos del cono:

Vc [gr] =	856,16	Volumen del cono (cm3)
W₁ [qr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	3244	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	17,41	Peso de la arena sobrante (3)
W ₄ [gr] =	378	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 295,15 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

 W_5 [gr] = 500 Peso húmedo del suelo extraido en el agujero

Ppf[gr] = 3,23

Ppf + Psh [gr] = 194,5

Ppf +Pss [gr] = 177,54

w % = 9,73

 $\gamma_h = 1,69$ gr/cm³ $\gamma_d = 1,54$ gr/cm³

Croquis de estratos

OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa
CALICATA:	C20-4
LOCALIZACIÓN:	RPN°20
COOORDENADAS	37° 25' 32,4" S
COOORDENADAS	66° 54' 18,3" O
EECHA:	22/08/2016

ECHA: 22/08/2016

Base: Tosca con clastos angulosos con matriz de areno-limosa color pardo claro, con escasa plasticidad y en estado seco.

Carpeta asfáltica: 4,5 cm de espesor.

Descripción

Subase: Arena limosa parda, con baja plasticidad y en estado húmedo.

Subrasante: Arenas limosas castaños, con escasa plasticidad y en estado

númedo.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 1,1x0,9 Profundidad [m]: 1,08

Fotos:

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 22/08/2016

Proyecto

Estudio de la infraestructura para la mejora de la conectividad de la Provincia de

Proyecto
La Pampa
Procedencia: La Pampa
Muestra: C20-4

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W_1	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2505,5	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1239,5	Peso de la arena sobrante (3)
W ₄ [gr] =	141	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 110,10 Volumen de la Excavación = W₄ /₇d arena

Datos de la muestra

W₅ [gr] = 188 Peso húmedo del suelo extraido en el agujero

Ppf [gr] = 3,22

Ppf + Psh [gr] = 159,8

Ppf +Pss [gr] = 147

w % = 8,90

 $\gamma_h = 1,71$ gr/cm³ $\gamma_d = 1,57$ gr/cm³

PLANILLA DE CALICATA OBRA: Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa CALICATA: LOCALIZACIÓN: RPNº20 37° 23' 04,2" S COOORDENADAS 65° 49' 29,8" O FECHA: 22/08/2016 Croquis de estratos Carpeta asfáltica: 5 cm de espesor. Base: Tosca con clastos angulosos con matriz de areno-limosa color pardo claro, con escasa plasticidad y en estado seco. Descripción Subase: Arena limosa parda, con baja plasticidad. 12 cm

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 1x1 Profundidad [m]: 0,97

Fotos:

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Subrasante: Arenas pardas con texturas francas.

Comitente:		Fecha:	22/08/2010
Provecto	Estudio de la infraestructura para la mejora d	e la conectividad de la	Provincia de

Proyecto
La Pampa
Procedencia: La Pampa
Muestra: C20-5

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W_1	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2453,5	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1206,5	Peso de la arena sobrante (3)
W ₄ [gr] =	122	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))
		-

Vs = 95,26 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

W₅ [gr] = 166,5 Peso húmedo del suelo extraido en el agujero

Ppf[gr] = 3,23Ppf + Psh[gr] = 143,32

Ppf +Pss [gr] = 129,24

w % = 11,17

 $\gamma_h = 1,75$ gr/cm³ $\gamma_d = 1,57$ gr/cm³

PLANILLA DE CALICATA OBRA: Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa CALICATA: LOCALIZACIÓN: RPNº20 37° 21' 18,4" S COOORDENADAS 65° 43' 52,5" O FECHA: 22/08/2016 Croquis de estratos Carpeta asfáltica: 5 cm de espesor. Base: Tosca con clastos subangulosos con matriz de arenosa color pardo claro, con escasa plasticidad y en estado seco. Descripción Subase: Arena fina parda, con baja plasticidad y ligeramente húmeda. Subrasante: Arenas pardas, húmedas y sin plasticidad. DIMENSIONES DE LA CALICATA.

Diámetro [m]:

Profundidad [m]:

0,95x0,85

1,62

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:		Fecha:	22/08/2016
Proyecto	Estudio de la infraestructura para la mejora de la	a conectividad de	la Provincia de
	La Pampa		

Procedencia: La Pampa
Muestra: C20-6

Datos del cono:

Vc [[gr] = 856,16	Volumen del cono (cm3)
W ₁ [[gr] = 1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2538	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1214	Peso de la arena sobrante (3)
W ₄ [gr] =	199	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))
•		-

Vs = 155,38 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

$W_5 [gr] = 261$	Peso húmedo del suelo extraido en el agujero
------------------	--

Ppf[gr] = 3,21Ppf + Psh[gr] = 176,39

Ppf +Pss [gr] = 164,32

w % = 7,49

 $\gamma_h = 1,68$ gr/cm³ $\gamma_d = 1,56$ gr/cm³

ESTUDIO GEOTÉCNICO

Distintos tramos Rutas de La Pampa

Provincia de la Pampa Argentina

RP N°24

INICIO: Guatraché FIN: Meridiano V

COMITENTE:

Córdoba, 9 de Setiembre de 2016

PLANILLA DE CALICATA

OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa
CALICATA:	C24-1
LOCALIZACIÓN:	RPN°24
COOORDENADAS	37° 39′ 21,6″ S
COOORDENADAS	63° 28' 19,6" O
FECHA:	18/08/2016

ECHA: 18/08/2016

Carpeta asfáltica: 5 cm de espesor.

Base: Tosca, clastos subangulosos con matriz areno-limosa parda oscura, sin plasticidad y baja humedad. El % de matriz aumenta en profundidad hacia la subase.

Subase: Arenas limosas pardo oscuras y humedas a levemente húmedas. Presenta bloques en la parte inferior del estrato.

Subrasante: Limo arcilloso color pardo oscuro con alto contenido de humedad.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,8x0,8 Profundidad [m]: 0,97

Fotos:

Descripción

Croquis de estratos

5 cm

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente: Fecha: 18/08/2016

Proyecto Estudio de la infraestructura para la mejora de la conectividad de la Provincia de

Proyecto
La Pampa
Procedencia: La Pampa
Muestra: C24-1

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W_1	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

I	γ _d arena [gr/cm ³]=	1,2807	
I	$W_2 + W_{pf} [gr] =$	2383,5	Peso total de la arena (2)
I	$W_3 + W_{pf} [gr] =$	844,5	Peso de la arena sobrante (3)
I	W ₄ [gr] =	414	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))

Vs = 323,26 Volumen de la Excavación = $W_4 / \gamma d$ arena

Datos de la muestra

W₅ [gr] = 616 Peso húmedo del suelo extraido en el agujero

Ppf [gr] = 3,23

Ppf + Psh [gr] = 172,07

Ppf +Pss [gr] = 142,73

w % = 21,03

 $\gamma_h = 1,91$ gr/cm³ $\gamma_d = 1,57$ gr/cm³

PLANILLA DE CALICATA

OBRA:	Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa
CALICATA:	C24-2
LOCALIZACIÓN:	RPN°24
COOORDENADAS	37° 39′ 19,5″ S
COOORDENADAS	63° 24' 49,8" O
EECHA:	18/08/2016

TECHA: 18/08/2016

Base: Tosca con clastos angulosos a subangulosos con matriz franca parda oscura, sin plasticidad y bajo contenido de huemdad.

Carpeta asfáltica: 5,5 cm de espesor.

Subase: Textura franco limosa pardo oscura, con escasa plasticidad y en estado húmedo.

Subrasante: Limo arenoso castaño escuro, con plasticidad y alto contenido de húmedad.

DIMENSIONES DE LA CALICATA.

Diámetro [m]: 0,8x0,8 Profundidad [m]: 1

Fotos:

Descripción

Croquis de estratos

5.5 cm

— 0.50 m

Determinación del peso específico in-situ Cono de arena - ASTM D1556

Comitente:	Fecha:	18/08/2016

Proyecto

Estudio de la infraestructura para la mejora de la conectividad de la Provincia de La Pampa

Procedencia: La Pampa
Muestra: C24-2

Datos del cono:

Vc	[gr] =	856,16	Volumen del cono (cm3)
W ₁	[gr] =	1125	Peso de la arena en el cono (1)

Datos de la arena

γ _d arena [gr/cm ³]=	1,2807	
$W_2 + W_{pf} [gr] =$	2669	Peso total de la arena (2)
$W_3 + W_{pf} [gr] =$	1241	Peso de la arena sobrante (3)
W ₄ [gr] =	303	Peso de la arena que ingreso en el agujero (4)=(2)-((3)+(1))
		-

Vs = 236,59 Volumen de la Excavación = W₄ /γd arena

Datos de la muestra

$W_5 [gr] = 464$	Peso húmedo del suelo extraido en el agujero
------------------	--

Ppf [gr] = 3,23

Ppf + Psh [gr] = 169

Ppf +Pss [gr] = 131,61

w % = 29,12

 $\gamma_{h} = 1,96$ gr/cm³ $\gamma_{d} = 1,52$ gr/cm³

10 ANEXO IV

Resultados de ensayos

Plasticidad, Clasificación

Tabla 107: Resultados de ensayos en Calicatas

Ruta	Calicata	LL	LP	IP	Golpes	Clasificación
	1- A	23,1/ 23,8	S.L.P.		20	A - 4 (1)
1	1- B	25,7	23,2	2,5		A - 4 (5)
	3- A	25,5	S.L.P.		25	A - 4 (3)
	3- B	22,6	S.L.P.		25	A - 4 (1)
	4- A					A - 2- 4 (0)
	4- B					A - 2- 4 (0)
	2- A	21,6	S.L.P.		25	A - 4 (3)
4	2- B	25,9	S.L.P.		25	A - 4 (3)
	3- A	22,6	15,5	7,1		A - 4 (2)
	3- B	21,3	18,6	2,7		A - 4 (2)
	4- A	20,1	17,3	2,8		A - 4 (3)
	4- B	20,4	18,0	2,4		A - 4 (4)
	5- A	26,8	17,0	9,8		A - 4 (7)
	5- B	25,0	16,1	8,9		A - 4 (7)
	6- A	31,4	21,9	9,5		A - 4 (8)
	6- B	30,5	23,7	6,8		A - 4 (8)
	7- A	24,4	18,2	6,2		A - 4 (4)
	7- B	25,3	18,7	6,6		A - 4 (4)
	1- A		S.L.P.			A - 4 (0)
	1- B		S.L.P.			A - 4 (0)
18	2- A		S.L.P.			A - 4 (0)
	2- B		S.L.P.			A - 4 (0)
	3- A		S.L.P.			A - 4 (0)
	3- B		S.L.P.			A - 4 (0)
	4- A		S.L.P.			A - 3 (0)
	4- B		S.L.P.			A - 2- 4 (0)
	5- A	21,0	16,5	4,5		A - 4 (2)
	5- B		S.L.P.			A - 4 (0)
24	1- A	22,4	18,3	4,1		A - 4 (4)
	2- A	28,4/ 28	S.L.P.		28	A - 4 (2)
	1- B	23,3	17,9	5,4		A - 4 (4)
	2- B	22,0	16,7	5,3		A - 4 (4)

Granulometrías

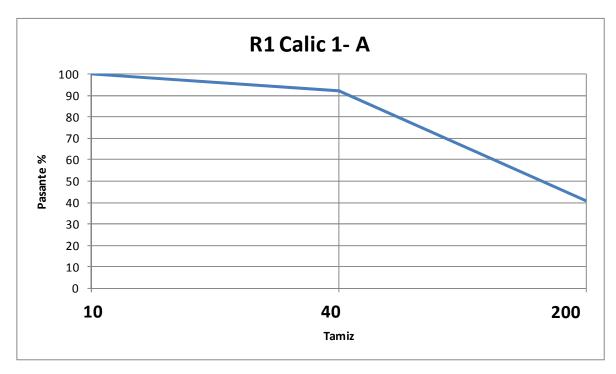


Figura 37: Granulometría R1 1-A

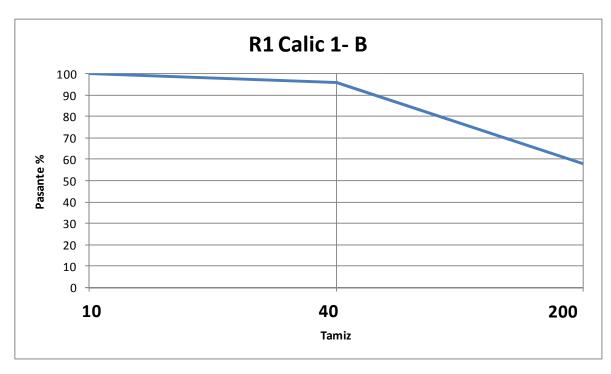


Figura 38: Granulometría R1 1-B

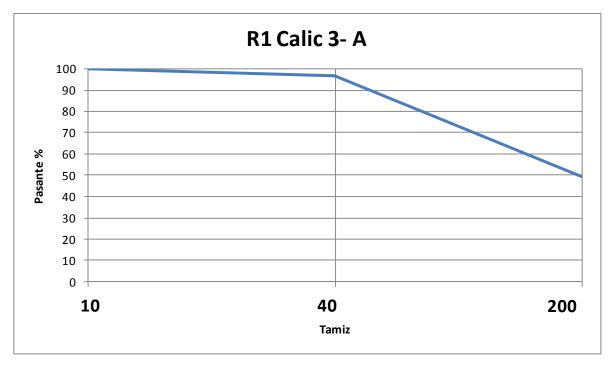


Figura 39: Granulometría R1 3-A

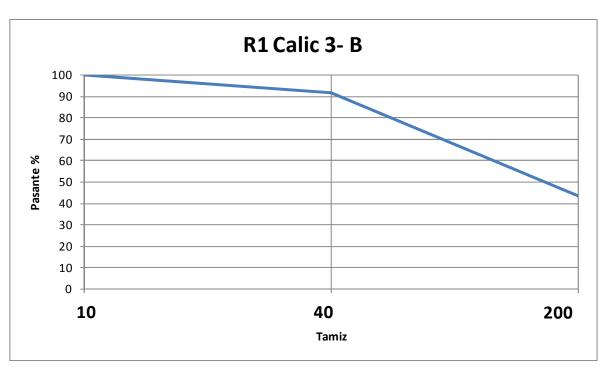


Figura 40: Granulometría R1 3-B

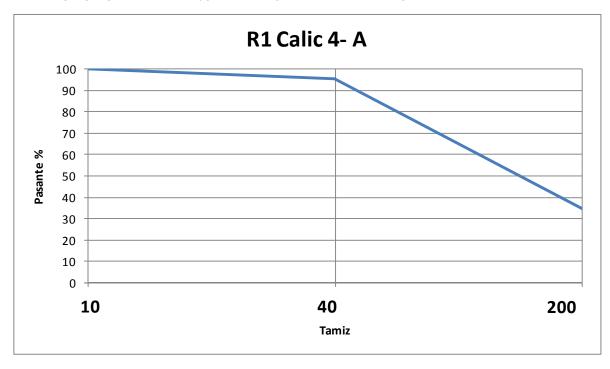


Figura 41: Granulometría R1 4-A

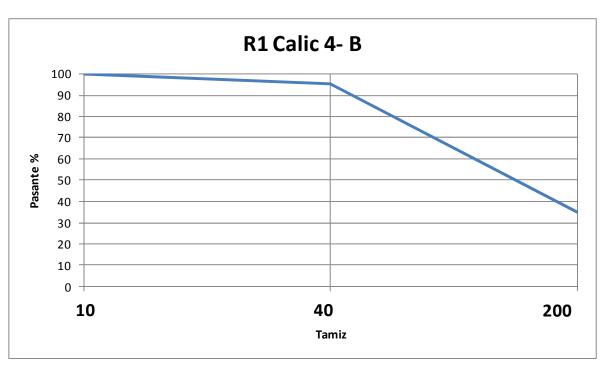


Figura 42: Granulometría R1 4-B

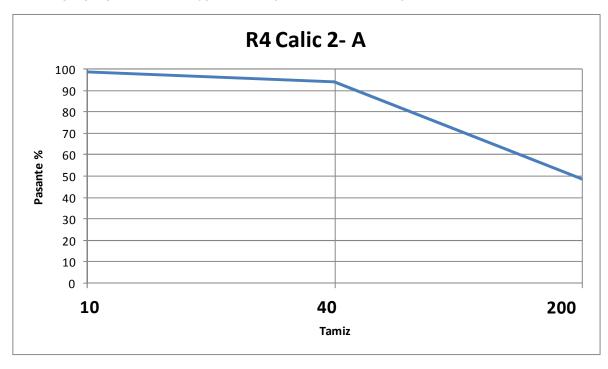


Figura 43: Granulometría R4 2-A

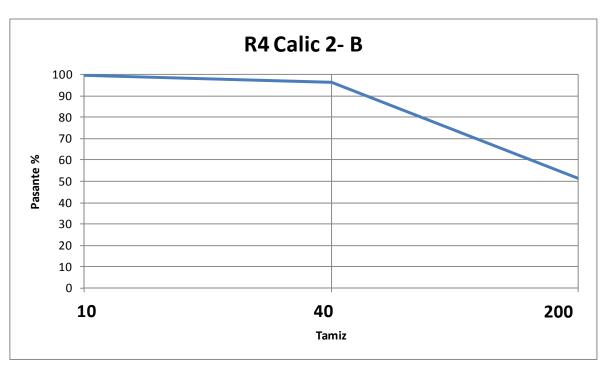


Figura 44: Granulometría R4 2-B

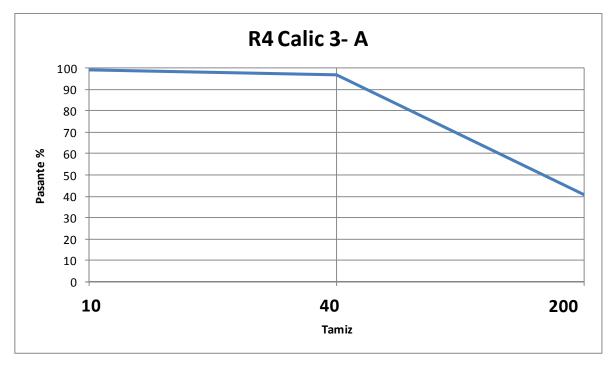


Figura 45: Granulometría R4 3-A

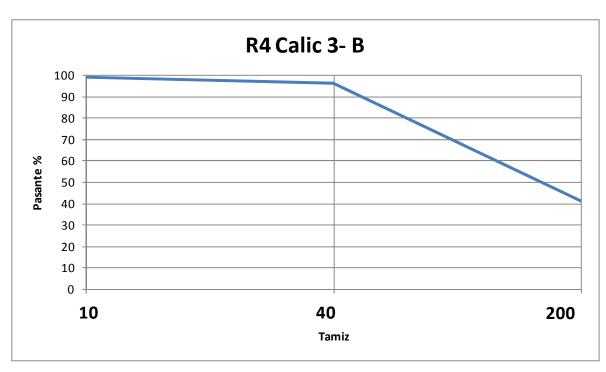


Figura 46: Granulometría R4 3-B

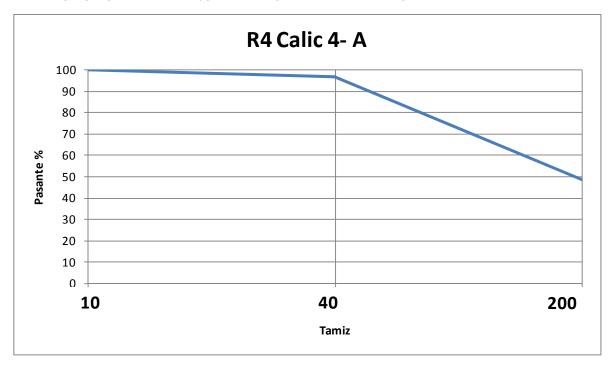


Figura 47: Granulometría R4 4-A

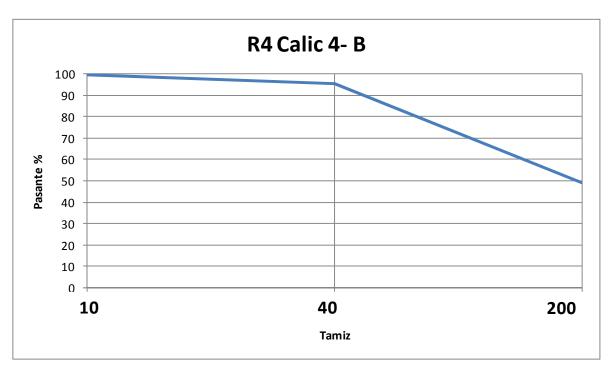


Figura 48: Granulometría R4 4-B

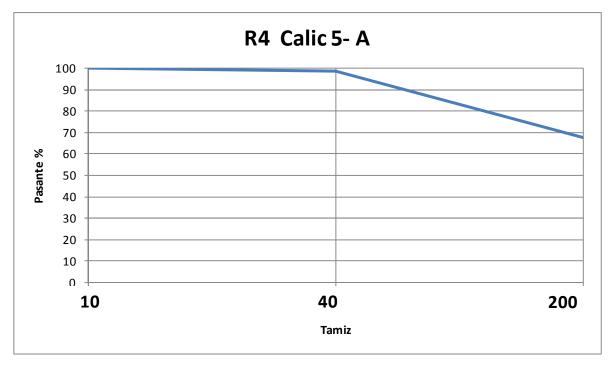


Figura 49: Granulometría R4 5-A

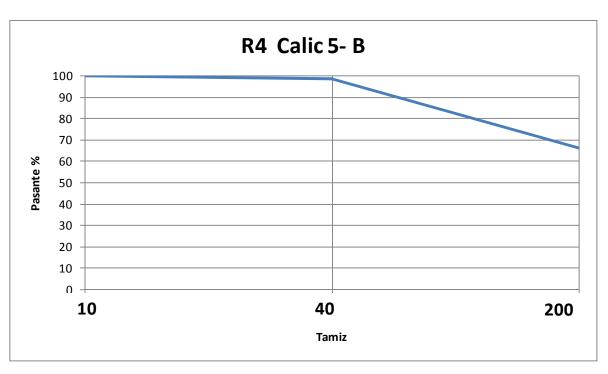


Figura 50: Granulometría R4 5-B

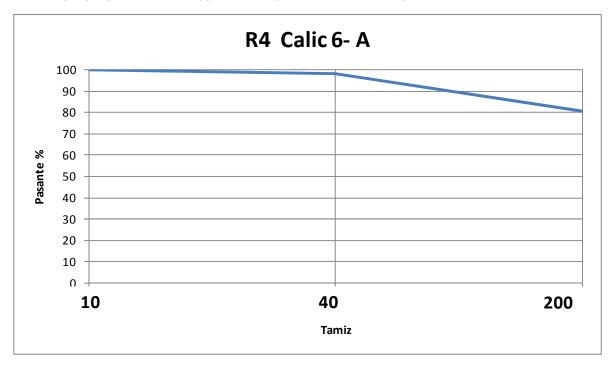


Figura 51: Granulometría R4 6-A

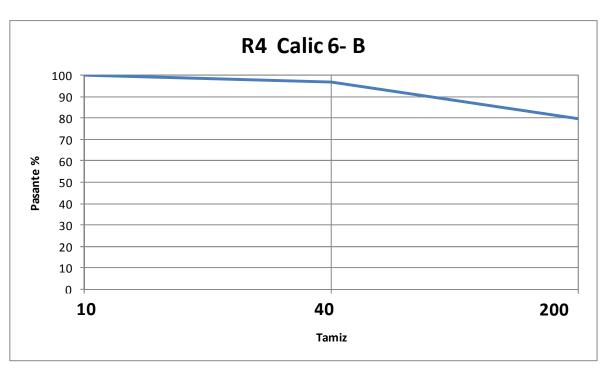


Figura 52: Granulometría R4 6-B

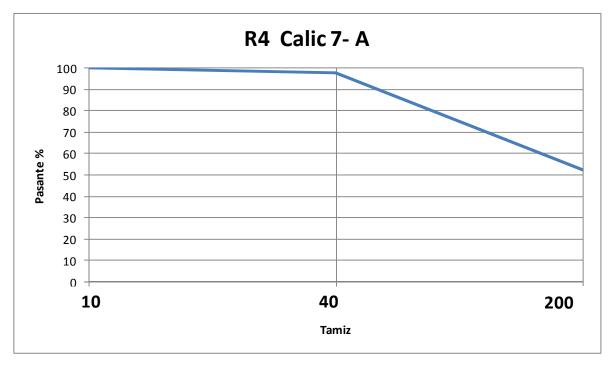


Figura 53: Granulometría R4 7-A

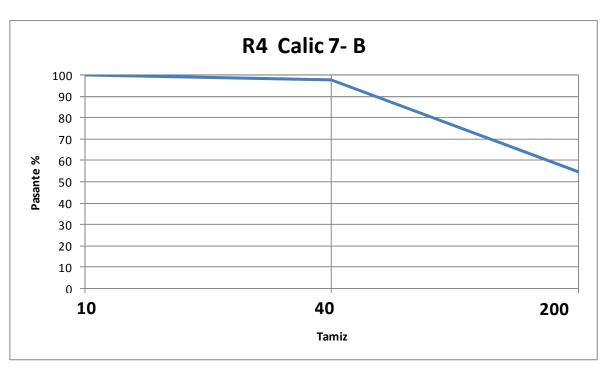


Figura 54: Granulometría R4 7-B

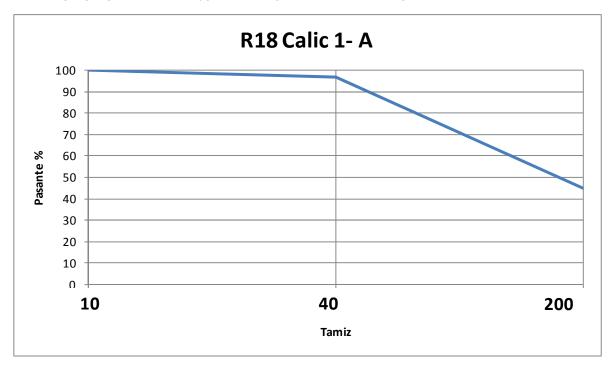


Figura 55: Granulometría R18 1-A

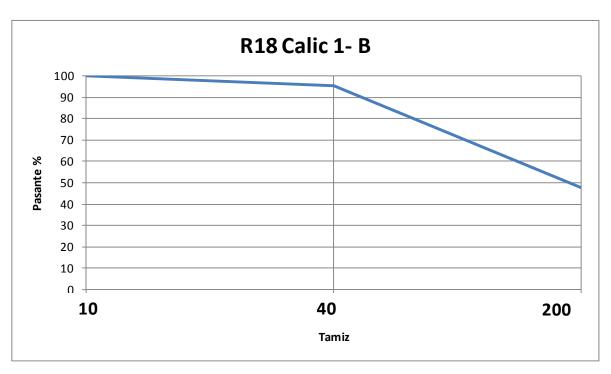


Figura 56: Granulometría R18 1-B

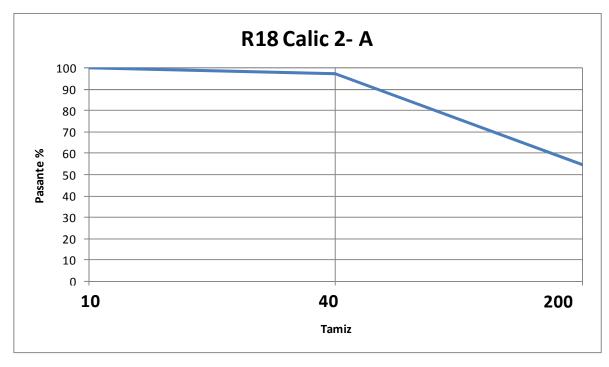


Figura 57: Granulometría R18 2-A

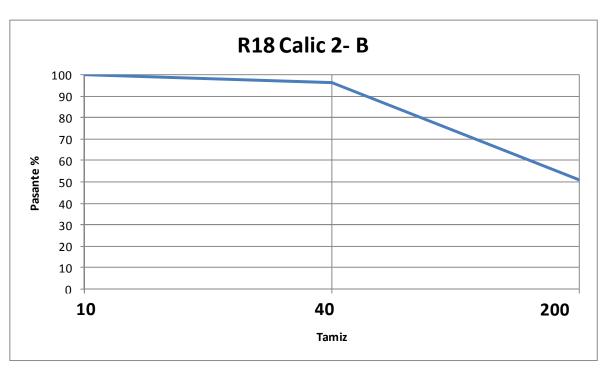


Figura 58: Granulometría R18 2-B

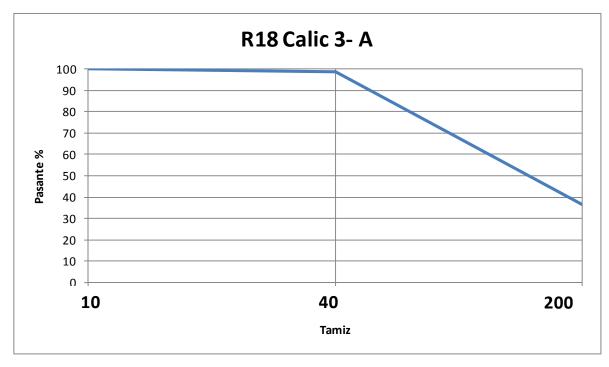


Figura 59: Granulometría R18 3-A

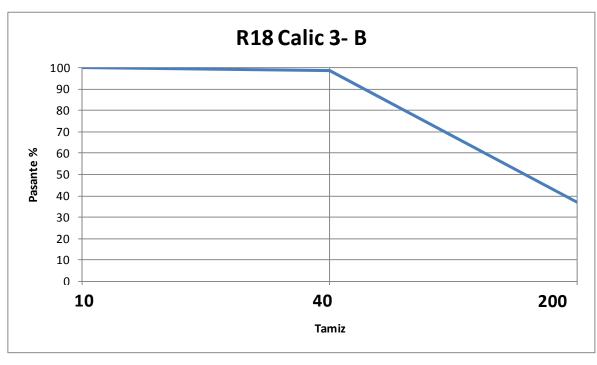


Figura 60: Granulometría R18 3-B

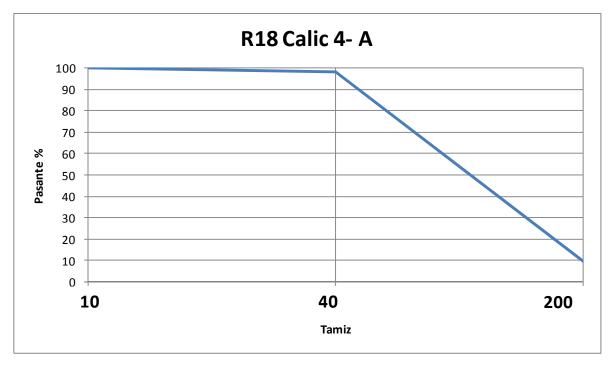


Figura 61: Granulometría R18 4-A

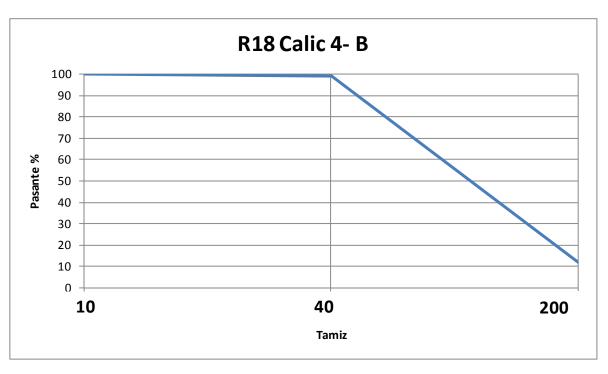


Figura 62: Granulometría R18 4-B

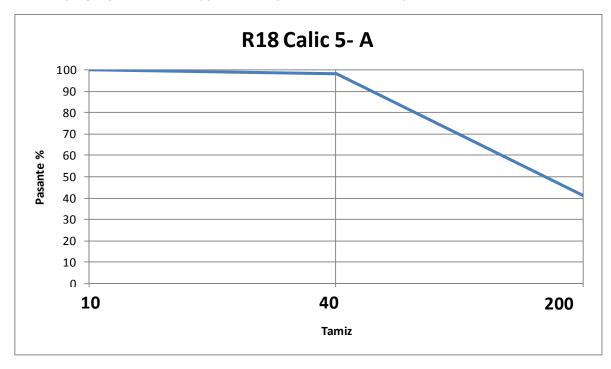


Figura 63: Granulometría R18 5-A

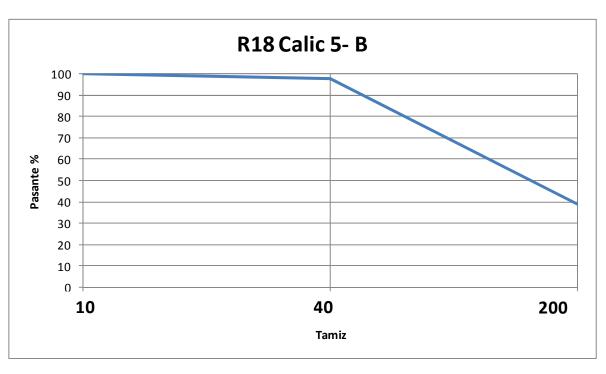


Figura 64: Granulometría R18 5-B

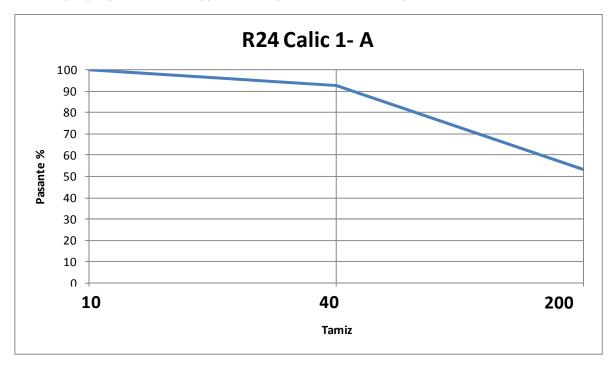


Figura 65: Granulometría R24 1-A

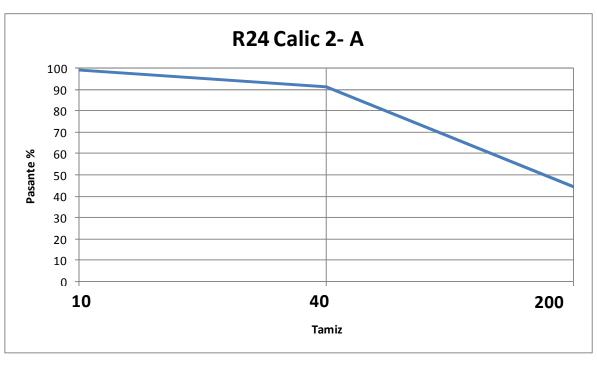


Figura 66: Granulometría R24 2-A

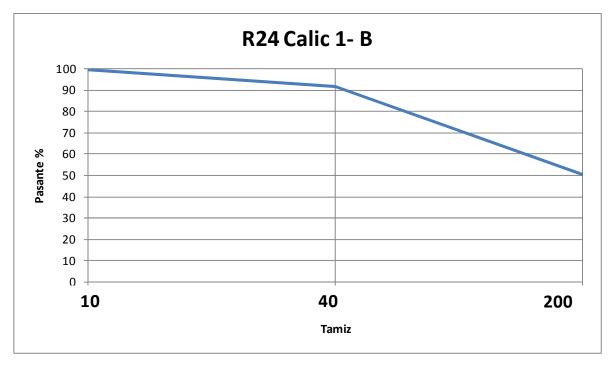


Figura 67: Granulometría R24 1-B

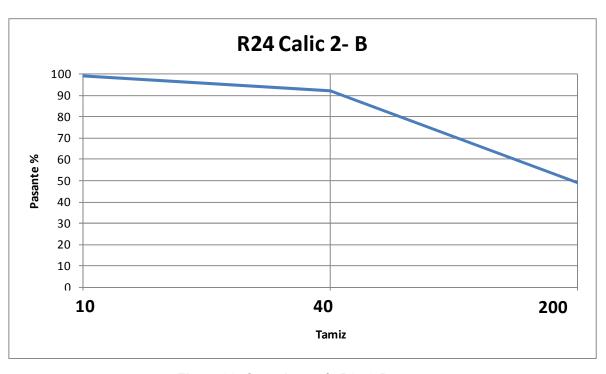


Figura 68: Granulometría R24 2-B

Planillas de ensayos

10.1 Ruta Provincial Nº1

Tramo de estudio entre RN Nº35 hasta Salinas La Colorada, longitud de tramo: 33km.

DIRECCIÓ	N PROVI	NCIAL DE	VIALIDA	D - LA PAI	MPA	RUTA `F	PROV Nº	1 - CALI	<u>CATAS</u>				
CRIBAS Y	RETIENE	N°		N°		N°		N°		N°		N°	
TAMICES	O PASA	Prog: C	alic 1- A	Prog: Ca	alic 1- B	Prog: Ca	alic 3- A	Prog: Ca	alic 3- B	Prog: Ca	alic 4- A	Prog: Ca	alic 4- B
		Gramos	%	Gramos	%	Gramos	%	Gramos	%	Gramos	%	Gramos	%
PESO T	OTAL	300		300		300		300		300		300	
TAMICES													
10	R	(0		0		0		0		0	
	P	300	100	300	100	300	100	300	100	300	100	300	10
40	R	24	ļ.	12		10		26		14		14	
	Р	276	92	288	96	290	96,7	274	91,3	286	95,3	286	95,
200	R	154		114		142		144		182		181	
	Р	122	40,7	174	58	148	49,3	130	43,3	104	34,7	105	3
Sobre													
Pesafil	tro Nº	LL()	L P()	L. L ()	LP()	L. L ()	LP()			L. L ()	L.P.()	LL()	LP()
Pf+S		- ,	S.L.P	38,2	26,6		S.L.P		S.L.P				
Pf+S		29,6		34,5 3.7	25,3 1,3			31,3 2,4					
Agua= a		20,1		20,1	19.7	20,7		20.7					
Ss = b	-	9,5		14,4	5,6			10,6					
Límite % =	c/e x 100	23,1/ 23,8	3	25,7	23,2	25,5		22,6					
Índice P	lástico			2	,5								
Clasificaci	ón H. R. B	Α-	4 (1)	Α	4 (5)	Α-	4 (3)	Α-	4 (1)	A - :	2-4(0)	Α-	2-4(0)

Tabla 108, Calicatas 1-A, 1-B, 3-A, 3-B, 4-A y 4-B.

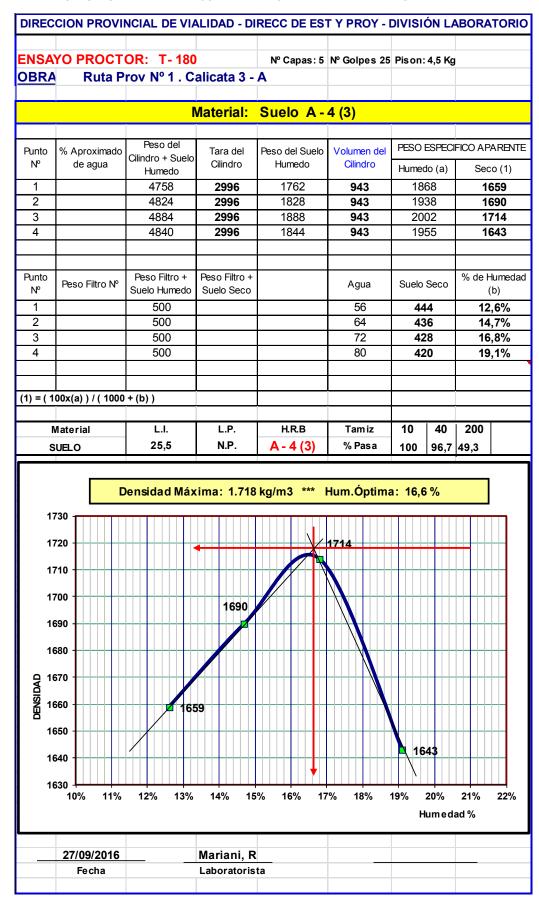


Tabla 109: Ensayo Proctor de Calicata 3-A.

OBRA: Estudio de Calicatas en Rutas Provinciales

RUTA PROV Nº 1 - Calicata 3 - A

MATERIAL: Suelo de Subrasante /// H.R.B. = A- 4 (3) F. Aro SOLICITANTE: Dir. Ppal de EE y PP Fecha: 30-09-16 0,189

Laboratorista: Mariani, R

Nº de	Molde	Peso	Peso	Peso	Vol.	Dens.	Dens.	Lecturas			Hincham	
Golpes	N°	M+S+A	Molde	S+A	Molde	Húm.	Seca	1ª Día	2º Día	3º Día	4º Día	%
12	.5	10986	7200	3786	2130	1777	1536	0	0	0	0	0
12								"	"	"	"	0
25	8	11132	7106	4026	2112	1906	1647	"	"	"	"	0
25								"	"	"	"	0
56	4	11350	7060	4290	2134	2010	1737	"	"	"	"	0
56	1	11038	6794	4244	2103	2018	1744	"	"	=	"	0

Proctor T-180 = 1.718 kg/m3 /// Hum. Öptima = 16.6 %

Tabla 110: Valores Soporte de diseño, Calicata 3-A.

Moldes №: 5	1										-	
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Stándard (Kg/cm2)				70				105	133	161	180	
Lecura Dial	8	15	20	24	28	32	35	39	51	62	74	
Presión	1,5	2,8	3,8	4,5	5,3	6,0	6,6	7,4	9,6	11,7	14,0	
% Estándar				6,5				7,0	7,2	7,1	7,6	12
Lecura Dial												Golpes
Presión												-
% Estándar												
Moldes №: 8												
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	18	38	53	67	79	90	101	112	149	182	208	
Presión	3,4	7,2	10,0	12,7	14,9	17,0	19,1	21,2	28,2	34,4	39,3	25
% Estándar				18,1				22,2	21,2	21,4	21,5	Golpes
Lecura Dial												
Presión												
% Estándar												
Moldes № 4 y 1												
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	9	30	65	100	132	160	187	212	295	372	440	
Presión	1,7	5,7	12,3	18,9	24,9	30,2	35,3	40,1	55,8	70,3	83,2	56
% Estándar				27,0				38,2	41,9	43,7	45,4	Golpes
Lecura Dial	8	22	63	107	147	182	212	244	340	428	500	
Presión	1,5	4,2	11,9	20,2	27,8	34,4	40,1	46,1	64,3	80,9	94,5	
% Estándar				28,9				43,9	48,3	50,2	51,6	

Tabla 111: Moldes de VSR, Calicata 3-A.

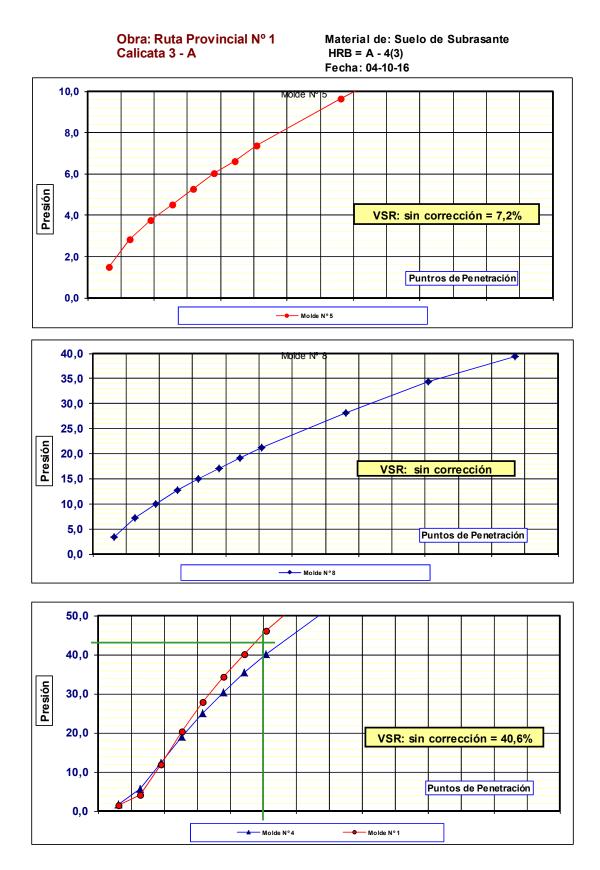


Tabla 112: presión-puntos de penetración de moldes, Calicata 3-A.

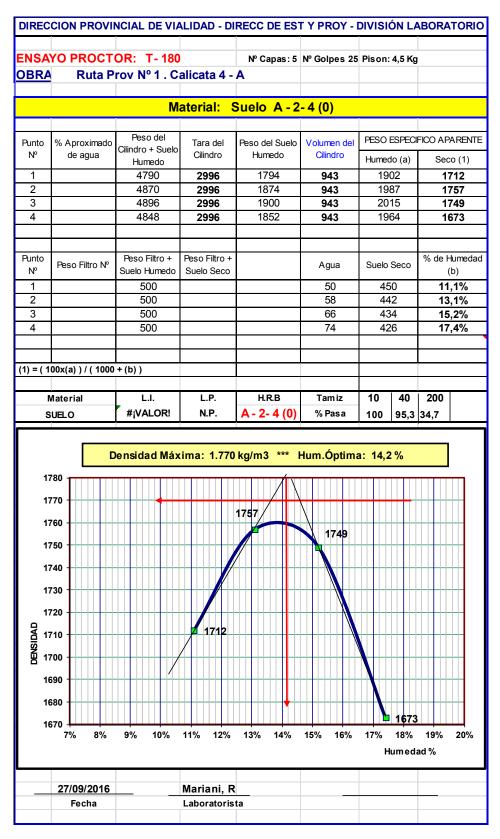


Tabla 113: Ensayo Proctor, Calicata 4-A.

Instituto de Investigación de Servcios Públicos e Infraestructura

OBRA: Estudio de Calicatas en Rutas Provinciales RUTA PROV Nº 1 - Calicata 4 - A

MATERIAL: Suelo de Subrasante /// H.R.B. = A- 2-4 (0)

Fecha: 14-10-16

F. Aro 0,189

Laboratorista: Mariani, R

SOLICITANTE: Dir. Ppal de EE y PP

Nº de	Molde	Peso	Peso	Peso	Vol.	Dens.	Dens.		Lec	turas		Hincham
Golpes	Nº	M+S+A	Molde	S+A	Molde	Húm.	Seca	1ª Día	2º Día	3º Día	4º Día	%
12	4	10748	7060	3688	2134	1728	1523	0	0	0	0	0
12								"	"	"	"	0
25	7	10994	7030	3964	2130	1861	1640	"	"	"	"	0
25								"	"	"	"	0
56	5	11392	7200	4192	2130	1968	1734	"	"	"	"	0
56								"		"	"	0

Tabla 114: Valor Soporte Diseño de Calicata 4-A

	a ,										_	
Moldes №: 4												
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Stándard (Kg/cm2)				70				105	133	161	180	
Lecura Dial	6	9	11	13	15	17	19	21	26	31	35	
Presión	1,1	1,7	2,0	2,5	2,8	3,2	3,6	4,0	4,9	5,8	6,6	
% Estándar				3,6				3,8	3,7	3,5	3,6	12
Lecura Dial												Golpes
Presión												
% Estándar												
Moldes №: 7												
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	20	34	44	54	60	66	72	78	97	117	136	
Presión	3,8	6,4	8,3	10,2	11,3	12,5	13,6	14,7	18,3	22,1	25,7	25
% Estándar				14,6				15,4	13,8	13,7	14,0	Golpes
Lecura Dial												
Presión												
% Estándar												
Moldes № 4 y 1												
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	40	70	96	120	140	158	176	193	248	280	310	
Presión	7,6	13,2	18,1	22,7	26,5	30,0	33,3	36,5	46,9	52,9	58,6	56
% Estándar				32,4				34,8	35,3	32,9	32,0	Golpes
Lecura Dial												
Presión												
% Estándar												

Tabla 115: Moldes de VSR, Calicata 4-A.

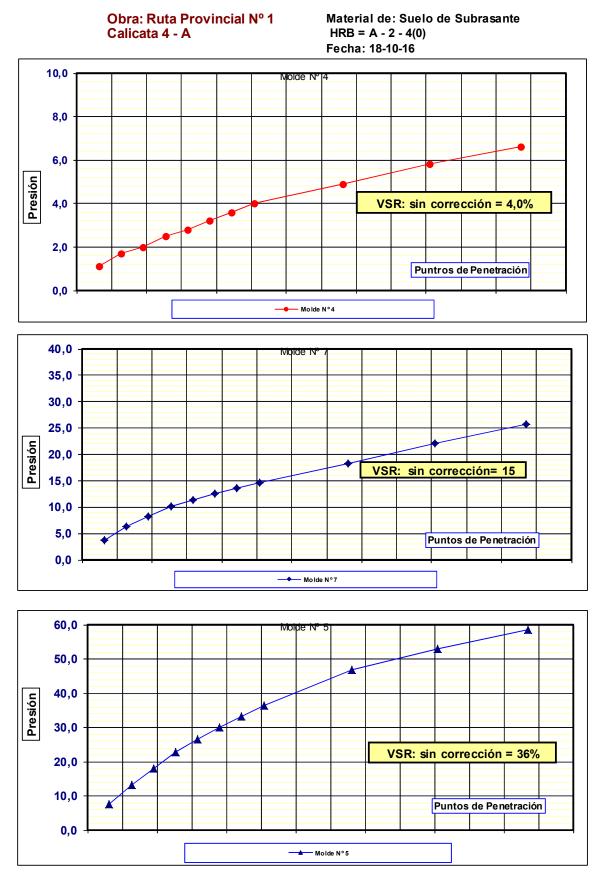


Tabla 116: presión-puntos de penetración de moldes, Calicata 4-A.

10.2 Ruta Provincial Nº4

Tramo de estudio entre RN Nº35 hasta RP Nº9, longitud de tramo: 22km.

Tramo de estudio entre RP Nº9 hasta RP Nº11, longitud de tramo: 40km.

DIRECCIÓ	N PROVI	NCIAL D	E VIALIDA	D - LA PAI	MPA	<u>RUTA` I</u>	PROV Nº	4 - CALI	<u>CATAS</u>				
CRIBAS Y	RETIENE	N°		N°		N°		N°		Nº		N°	
TAMICES	O PASA	Prog: (Calic 2- A	Prog: Ca	alic 2- B	Prog: Ca	alic 3- A	Prog: Ca	alic 3-B	Prog: Ca	alic 4- A	Prog: Ca	alic 4- B
		Gramos	%	Gramos	%	Gramos	%	Gramos	%	Gramos	%	Gramos	%
PESO T	OTAL	300		300		300		300		300		300	
TAMICES													
10	R		4	2		2		3		0		1	
	Р	2	98,	7 298	99,3	298	99,3	297	99	300	100	299	99,7
40	R		14	10		7		9		10		12	
	Р	2	32 94	1 288	96	291	97	288	96	290	96,7	287	95,7
200	R	1:	36	134		169		165		145		139	
	Р	1-	16 48 ,	7 154	51,3	122	40,7	123	41	145	48,3	148	49,3
Sobre													
Pesafil	tro Nº	LL()	LP()	L. L ()	LP()	L. L ()	LP()	L. L ()	LP()	L. L ()	L.P.()	LL()	LP()
Pf+S	h = a	37	,6 S.L.P	34,8	S.L.P	` '	, ,	` ′	` ′	` ,	` '	` ,	` '
Pf+S	s = b	34	,2	31,9									
Agua= a	ı - b =c		3	2,9									
P f	= d	20	,7	20,7									
Ss = b		13	,-	11,2									
Límite % =		21	,6	25,9		22,6							
Índice P	lástico					7	,1	2	2,7	2	.,8	2	,4
Clasificacio	ón H. R. B	Α	- 4 (3)	Α-	4 (3)	Α-	4 (2)	Α-	4 (2)	Α-	4 (3)	Α-	4 (4)

Tabla 117, Calicatas 2-A, 2-B, 3-A, 3-B, 4-A y 4-B.

DIRECCIÓ	N PROVI	NCIAL	. DE	VIAL	_IDA	D-LA	PAN	/IPA		RUT	<u>A `F</u>	ROV	'Nº	4 - CA	4 <i>LI</i> (CATAS	<u>:</u>							
CRIBAS Y	RETIENE	N°				N°				Nº				N°				N°			Nº			
TAMICES	O PASA	Prog:	Ca	lic 5	- A	Prog:	Ca	lic 5-	В	Prog:	Ca	lic 6-	Α	Prog:	Ca	lic 6- E	;	Prog: Ca	alic 7	'- A	Prog:	Ca	ilic 7-	- B
		Gran	nos	9	%	Gram	os	%		Gran	nos	%	,	Gran	nos	%		Gramos	,	%	Gran	nos	9	6
PESO 1	TOTAL	300	0			300				300	0			300)			300			30	0		
TAMICES																								
10	R		0				0				0				0			C				0		
	Р		300		100		300		100		300		100		300	1	00	300		100		300		100
40	R		4				5				6				9			6	6			6		
	Р		296		98,7		295		98,3		294		98		291		97	294		98		294		98
200	R		93				97				53				51			136	6			139	ı	
	Р		203		67,7		198		66		241		80,3		240		80	158	1	52,7		155		54,7
Sobre																								
Pesafi	Itro Nº	LL()	LP()	L. L ()	LP()	L. L ()	LP()	L. L ()	LP()	L. L ()	L.P.()	LL()	LP()
Pf+S	6 h = a																						1	
Pf+S	s=b																							
Agua=	a - b =c																						1	
Ρf	= d																						1	
Ss = b	- d = e																							
Límite % =	c/e x 100		26,8		17		25		16,1		31,4		21,9		30,5	2	3,7	24,4	ļ .	18,2		25,3		18,
Índice F	Plástico		9	,8			8,	9			9	,5			6	,8		- 6	5,2			6	,6	
Clasificaci	ión H. R. B		Α-	4 (7)			A - 4	1 (7)			Α-	4 (8)			Α-	4 (8)		Α-	4 (4)			Α-	4 (4)	

Tabla 118, Calicatas 5-A, 5-B, 6-A, 6-B, 7-A y 7-C.

Tabla 119: Ensayo Proctor de Calicata 2-A.

OBRA: Estudio de Calicatas en Rutas Provinciales RUTA PROV Nº 4 - Calicata 2 - A

MATERIAL: Suelo de Subrasante /// H.R.B. = A- 4 (3)

Fecha: 07-10-16 0,189

F. Aro

SOLICITANTE: Dir. Ppal de EE y PP Fecha: 07-10-1

Laboratorista: Mariani, Roberto

	0.100	ta. Mai	,	0.00.10								
Nº de	Molde	Peso	Peso	Peso	Vol.	Dens.	Dens.		Lec	turas		Hincham
Golpes	N°	M+S+A	Molde	S+A	Molde	Húm.	Seca	1ª Día	2º Día	3º Día	4º Día	%
12	2	10994	7188	3806	2124	1792	1558	0	0	0	0	0
12								"	"	"	"	0
25	5	11326	7200	4126	2130	1937	1684	"	"	"	"	0
25								"	"	"	"	0
56	4	11466	7060	4406	2134	2065	1795	"	"	"	"	0
56	7	11436	7030	4406	2130	2068	1798	"		"	"	0

Proctor T-180 = 1.785 kg/m3 /// Hum. Öptima = 15.6 %

Tabla 120: Valores Soporte de diseño, Calicata 2-A.

Moldes №: 2											•	
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Stándard (Kg/cm2)				70				105	133	161	180	
Lecura Dial	8	13	16	18	19	20	21	22	27	32	37	
Presión	1,5	2,4	3,0	3,4	3,6	3,8	4,0	4,1	5,1	6,0	7,0	
% Estándar				4,9				3,9	3,8	3,6	3,8	12
Lecura Dial												Golpes
Presión												
% Estándar												
Moldes №: 5												
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	20	34	43	50	56	61	67	74	92	110	130	
Presión	3,8	6,4	8,1	9,4	10,6	11,5	12,6	14,0	17,3	20,7	24,5	25
% Estándar				13,4				14,7	13,0	12,9	13,4	Golpes
Lecura Dial												•
Presión												
% Estándar												
		•	•	•		•	•	•	•	•		
BA - L-1 NO - 4												
Moldes № 4 y 7									T =			
Penetración	0,63	1,27 97	1,9 140	2,54 174	3,17	3,81 226	4,44 248	5,08 272	7,62	10,1 429	12,7 495	
Lecura Dial	50				200				350			
Presión	9,4	18,3	26,5	32,9	37,8	42,7	46,8	51,4	66,1	81,0	93,5	56
% Estándar	<u> </u>			47,0				49,0	49,7	50,3	51,1	Golpes
Lecura Dial	45	92	128	156	185	205	217	247	327	397	420	
Presión	8,5	17,4	24,2	29,5	35,0	38,7	41,0	46,7	61,8	75,0	79,4	
% Estándar		1		42,1			1	44,5	46,5	46,6	43,4	

Tabla 121: Moldes de VSR, Calicata 2-A.

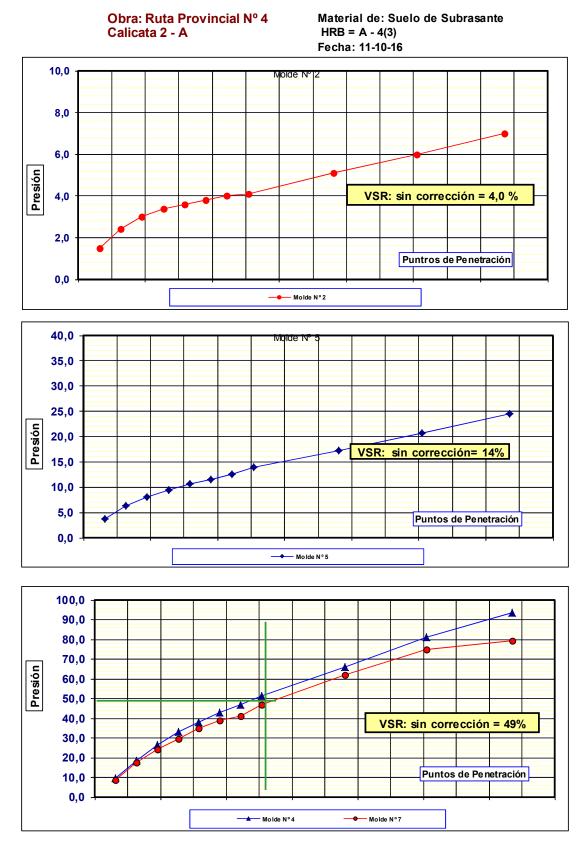


Tabla 122: presión-puntos de penetración de moldes, Calicata 2-A.

10.3 Ruta Provincial Nº18

Tramo de estudio entre RP Nº1 hasta RP Nº35, longitud de tramo: 55km.

DIRECCIÓ	N PROVI	NCIAL	. DE	VIAL	.IDAI	D - LA P	AMI	PA	<u>RUTA</u>	\ ` <i>F</i>	ROV	N°	<u> 18 - C</u>	CAL	<u>ICATAS</u>							
CRIBAS Y	RETIENE	N°				N°			N°				N°			Nº			N°			
TAMICES	O PASA	Prog:	Ca	ilic 1	- A	Prog: (Cali	c 1- B	Prog:	Ca	lic 2-	Α	Prog:	Ca	alic 2- B	Prog:	Ca	lic 3- A	Prog:	Ca	ılic 3	- B
		Gran	nos	9	6	Gramos	;	%	Gramo	sc	%		Gram	105	%	Gramo	os	%	Gran	nos	9	6
PESO T	TOTAL .	30	0			300			300				300)		300			30	0		
TAMICES																						
10	R		0				0			0				0			0			0		
	Р		300		100	30	00	100		300		100		300	100	;	300	10	0	300		100
40	R		10				14			8				10			4			4		
	Р		290		96,7	28	86	95,3		292		97,3		290	96,7		296	98,	7	296		98,
200	R		155			14	44	•		128				137			186			185		
	Р		135		45	14	42	47,3		164		54,7		153	51		110	36,	7	111		37
Sobre																						
Pesafil	ltro Nº	LL()	LP()	L. L ()	L	P()	L. L ()	LP()	L. L ()	LP()	L. L ()	L.P.()	LL()	LP()
Pf+S	h = a			S.L.P)		S	i.L.P			S.L.P				S.L.P			S.L.P			S.L.P	
Pf+S	s = b																					
Agua= a	a - b =c																					
P f	= d																					
Ss = b	- d = e																					
Límite % =	c/e x 100																					
Índice P	Plástico																					
Clasificaci	ón H. R. B		Α-	4 (0)		Α	- 4	(0)		Α - 4	4 (0)			Α-	4 (0)	-	4 - 4	4 (0)		Α-	4 (0)	

Tabla 123, Calicatas 1-A, 1-B, 2-A, 2-B, 3-A y 3-B.

DIRECCIÓ	N PROVI	NCIAL	. DE	VIAL	.IDAI	D - LA	PAI	MPA		RUT	<u>A `F</u>	PROV	′ N°	<u> 18 - C</u>	CAL	ICAT.	<u> 4S</u>
CRIBAS Y	RETIENE	N°				N°				N°				Nº			
TAMICES	O PASA	Prog:	Ca	ilic 4	- A	Prog:	Ca	lic 4-l	В	Prog:	Ca	lic 5-	Α	Prog:	Ca	lic 5-	В
		Grar	nos	9	6	Gram	os	%		Gran	10S	%)	Gran	nos	%	
PESO T	OTAL	30	0			300	١			300)			300)		
TAMICES																	
10	R		0				0				0				0		
	Р		300		100		300		100		300		100		300		100
40	R		5				4				6				6		
	Р		295		98,3		296	ç	98,7		294		98		294		98
200	R		265				261				171				177		
	Р		30		10		32	1	11,7		123		41		117		39
Sobre																	
Pesafil	tro Nº	LL()	LP()	L. L ()	LP()	L. L ()	LP()	L. L ()	LP()
Pf+S	h = a			S.L.P)			S.L.P								S.L.P	
Pf+S	s = b																
Agua= a	- b =c																
Pf=	= d																
Ss = b	- d = e																
Límite % =	c/e x 100										21		16,5				
Índice P	lástico										4	,5					
Clasificació	ón H. R. B		A -	3 (0)			<mark>A -</mark>	<mark>2-4 (0</mark>))		A -	4 (2)			A -	4 (0)	

Tabla 124, Calicatas 4-A, 4-B, 5-A y 5-B.

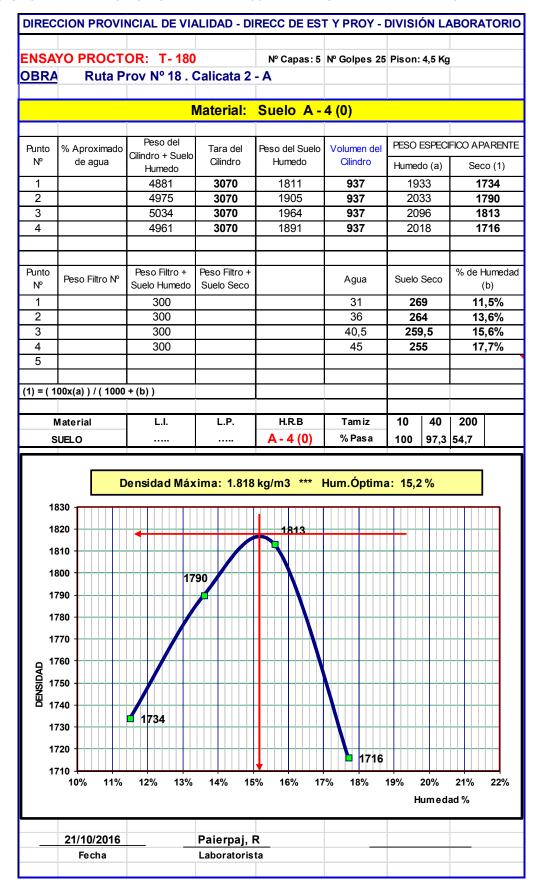


Tabla 125: Ensayo Proctor de Calicata 2-A.

OBRA: Estudio de Calicatas en Ruta Provinciales RUTA PROV Nº 18 - Calicata 2- A

MATERIAL: Suelo de Subrasante /// H.R.B. = A- 4 (0)

F. Aro Fecha: 27-10-2016

SOLICITANTE: Dir. Ppal de EE y PP Laboratorista: Paierpaj, Roberto

Nº de	Molde	Peso	Peso	Peso	Vol.	Dens.	Dens.		Lec	turas		Hincham
Golpes	Nº	M+S+A	Molde	S + A	Molde	Húm.	Seca	1ª Día	2º Día	3º Día	4º Día	%
12	4	8253	4296	3957	2050	1930	1680	38	38	38	38	0,3
12								"	"	"	"	0
25	5	8565	4342	4223	2042	2068	1800	39	39	39	39	0,3
25								"	"	"	"	0
56	6	8630	4275	4355	2061	2113	1839	12	12	12	12	0,1
56								"	"	"	"	0

Proctor T-180 = 1.818 kg/m3 /// Hum. Öptima = 15,2 %

Tabla 126: Valores Soporte de diseño, Calicata 2-A.

Moldes №: 4]							Factor	Aro:	1,76	-	
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Stándard (Kg/cm2)				70				105	133	161	180	
Lecura Dial	8	17	26	35	44	52	60	68	88	110		
Presión	1,4	3,0	4,6	6,2	7,7	9,2	10,6	12,0	15,5	19,4		
% Estándar				8,9				11,4	11,7	12,0		12
Lecura Dial												Golpes
Presión												
% Estándar												
Moldes №: 5								Factor	Aro:	10,94		
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	2	5	7	9	11	13	16	18	25	31		
Presión	2,2	5,5	7,7	9,8	12,0	14,2	17,5	19,7	27,4	33,9		25
% Estándar				14,0				18,8	20,6	21,1	0,0	Golpes
Lecura Dial												
Presión												
% Estándar												
Moldes № 6								Factor	Aro:	10,94		
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	2	5	9	12	15	18	21	25	34	42		
Presión	2,2	5,5	9,8	13,1	16,4	19,7	23,0	27,4	37,2	45,9		56
% Estándar				18,7				26,1	28,0	28,5		Golpes
Lecura Dial												
Presión												
% Estándar												

Tabla 127: Moldes de VSR, Calicata 2-A.

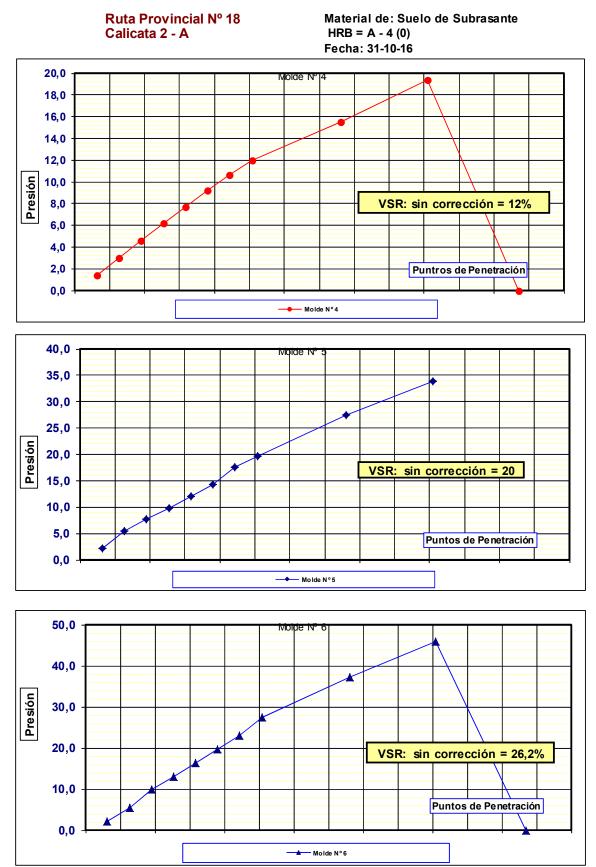


Tabla 128: presión-puntos de penetracion de moldes, Calicata 2-A.

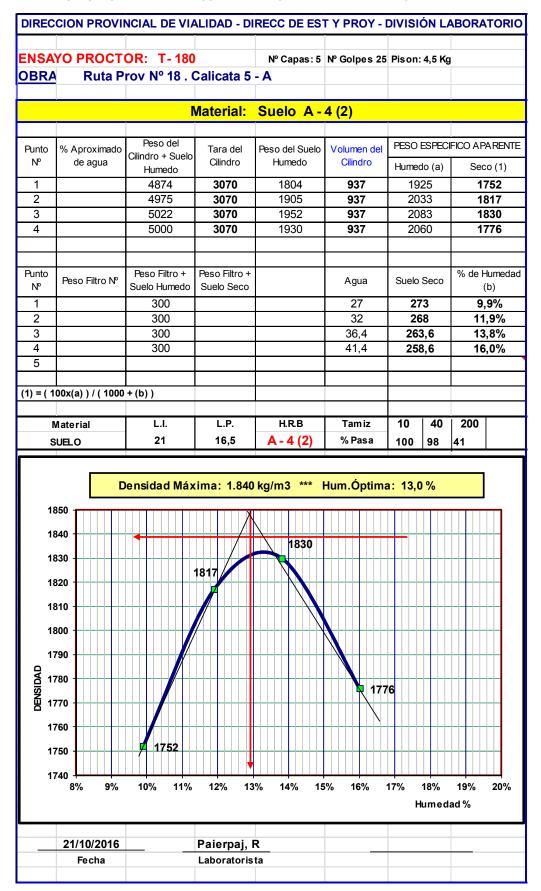


Tabla 129: Ensayo Proctor de Calicata 5-A.

OBRA: Estudio de Calicatas en Ruta Provinciales RUTA PROV Nº 18 - Calicata 5-A

MATERIAL: Suelo de Subrasante /// H.R.B. = A- 4 (2)

SOLICITANTE: Dir. Ppal de EE y PP Fecha: 27-10-2016

F. Aro

Laboratorista: Paierpaj, Roberto

Nº de	Molde	Peso	Peso	Peso	Vol.	Dens.	Dens.		Lec	turas		Hincham
Golpes	N°	M+S+A	Molde	S + A	Molde	Húm.	Seca	1ª Día	2º Día	3º Día	4º Día	%
12	1	8349	4420	3929	2038	1928	1700					0
12												
25	2	8540	4336	4204	2047	2054	1811					0
25												
56	3	8709	4340	4369	2051	2130	1878					0
56												

Proctor T-180 = 1.840 kg/m3 /// Hum. Öptima = 13,0 %

Tabla 130: Valores Soporte de diseño, Calicata 5-A.

Moldes №: 1]							Factor	Aro:	1,76	-	
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Stándard (Kg/cm2)				70				105	133	161	180	
Lecura Dial	10	19	28	36	44	53	61	70	91	113		
Presión	1,8	3,3	4,9	6,3	7,7	9,3	10,7	12,3	16,0	19,9		
% Estándar				9,0				11,7	12,0	12,4		12
Lecura Dial												Golpes
Presión												
% Estándar												
Moldes №: 2								Factor	Aro:	10,94		
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	1	4	7	10	12	15	18	20	28	33		
Presión	1,1	4,4	7,7	10,9	13,1	16,4	19,7	21,9	30,6	36,1		25
% Estándar				15,6				20,9	23,0	22,4	0,0	Golpes
Lecura Dial												
Presión												
% Estándar												
Moldes N° 3								Factor	Aro:	10,94		
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	2	6	10	13	16	19	23	27	36	44		
Presión	2,2	6,6	10,9	14,2	17,5	20,8	25,2	29,5	39,4	48,1		56
% Estándar				20,3				28,1	29,6	29,9		Golpes
Lecura Dial												
Presión												
% Estándar												

Tabla 131: Moldes de VSR, Calicata 5-A.

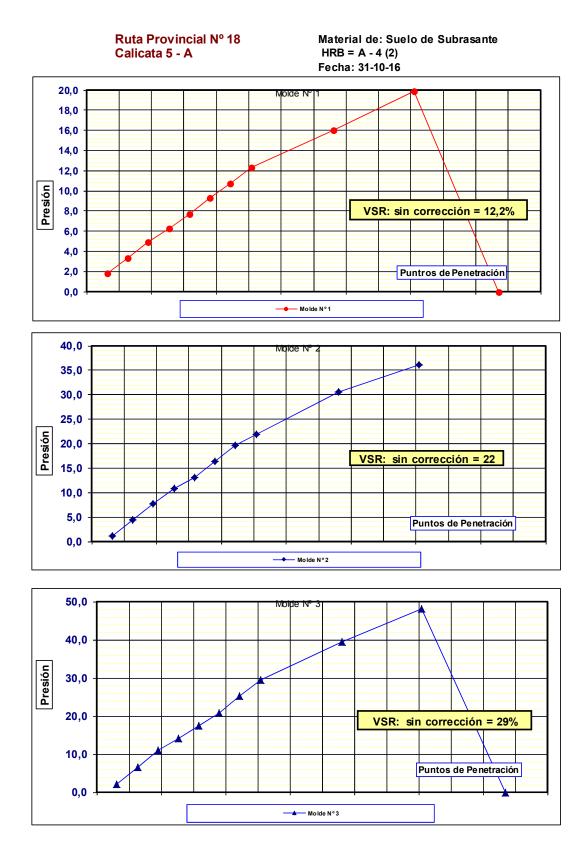


Tabla 132: presión-puntos de penetración de moldes, Calicata 5-A.

10.4 Ruta Provincial N°20

Tramo de estudio entre Meridiano V hasta Guatraché, longitud de tramo: 12km.

DIRECCIÓ	N PROVI	NCIAL DE	VIALIDA	D - LA PAI	MPA	<u>RUTA `F</u>	PROV Nº	20 - CAL	<u>ICATAS</u>				
CRIBAS Y	RETIENE	N°		N°		N°		N°		N°		N°	
TAMICES	O PASA	Prog: Ca	alic 1- A	Prog: Ca	lic 2- A	Prog: Ca	alic 3- A	Prog: Ca	alic 4- A	Prog: Ca	alic 5- A	Prog: Ca	alic 6- A
		Gramos	%	Gramos	%	Gramos	%	Gramos	%	Gramos	%	Gramos	%
PESO T	OTAL	300		300		300		300		300		300	
TAMICES													
10	R	0		0		0		2		2		1	
	Р	300	100	300	100	300	100	298	99,3	298	99,3	299	99,0
40	R	2		2		2		2		6		4	
	Р	298	99,3	298	99,3	298	99,3	296	98,6	292	97,3	295	98,
200	R	166		138		242		250		196		258	
	Р	132	44	160	53	56	18,6	46	15,3	96	32	37	12,3
Sobre													
Pesafil	tro Nº	LL()	LP()	L. L ()	LP()	L. L ()	LP()	L. L ()	LP()	L. L ()	L.P.()	L L ()	LP()
Pf+S	h = a	31	35,8	33,8	33,8	38	S.L.P	35,1	S.L.P	34,8	S.L.P	S.L.L	S.L.P
Pf+S	s = b	28,8	32,9	30,7	31,2	34,6		32,1		32			
Agua= a	ı - b =c	2,2	2,9	3,1	2,6	3,4		3		2,8			
Pf=	= d	20,71	20,03	20,65	19,75	20,52		20,08		20,52			
Ss = b	d = e	8,09	12,87	10,05	11,45	14,08		12,02		11,48			
Límite % =	c/e x 100	27,2	22,5	30,8	22,7	24,1		24,9		24,3			
Índice P	lástico	4	,7	8	,1								
Clasificació	ón H. R. B	Α-	4 (2)	Α	4 (4)	Α-	2-4 (0)	Α-	2-4 (0)	A -	2-4 (0)	Α-	2-4 (0)

Tabla 133, Calicatas 1-A, 2-A, 3-A, 4-A, 5-A y 6-A.

DIRECCI	ÓN PROVI	NCIAL DE	VIALIDA	D - LA PAI	MPA	RUTA `F	PROV Nº	20 - CAL	<u>ICATAS</u>				
CRIBAS Y	RETIENE	N°		N°		N°		N°		N°		N°	
TAMICES	O PASA	Prog: C	alic 1- B	Prog: Ca	lic 2- B	Prog: Ca	alic 3- B	Prog: Ca	alic 4- B	Prog: Ca	alic 5- B	Prog: Ca	lic 6- B
		Gramos	%	Gramos	%	Gramos	%	Gramos	%	Gramos	%	Gramos	%
PESO	TOTAL	300		300		300		300		300		300	
TAMICES													
10	R	1		1		0		1		2		0	
	Р	299	99,6	299	99,6	300	100	299	99,6	298	99,3	300	10
40	R	8	3	6		1		2		6		4	
	Р	291	97	293	97,6	299	99,6	297	99	292	97,3	296	98,
200	R	168	3	140		256		262		206		262	
	Р	123	41	153	51	43	14,3	35	11,6	86	28,6	34	11,
Sobre													
Pesaf	iltro Nº	LL()	L P()	L. L ()	LP()	L. L ()	LP()	L. L ()	LP()	L. L ()	L.P.()	L L ()	LP()
Pf+S	Sh=a	36,7	35	36,6	33,6	39,7	S.L.P	S.L.L	S.L.P	35,9	S.L.P	S.L.L	S.L.P
Pf+	Ss=b	33,1	32,4	32,4	31	35,9				32,9			
Agua=	a - b =c	3,6	2,6	4,2	2,6	3,8				3			
P f	= d	20,03	20,08	19,75	20,71	20,52				20,65			
Ss = b	o - d = e	13,07	12,32	12,65	10,29	15,38				12,25			
Límite % :	= c/e x 100	27,5	21,1	33,2	25,3	24,7				24,5			
Índice	Plástico	(3,4	7	,9								
Clasificac	ión H. R. B	Α-	4 (1)	Α	4 (3)	Α-	2-4 (0)	Α-	2-4 (0)	Α-	2-4 (0)	Α-	2-4 (0)

Tabla 134, Calicatas 1-B, 2-B, 3-B, 4-B, 5-B y 6-B.

10.5 Ruta Provincial N°24

Tramo de estudio entre Meridiano V hasta Guatraché, longitud de tramo: 12km.

DIRECCIÓ	N PROVI	NCIAL	. DE	VIAI	_IDAI	D - LA I	PAI	MPA		RUT	<u>A `F</u>	PROV	Nº	<u> 24 - (</u>	CAL	<u>ICAT</u>	<u>AS</u>
CRIBAS Y	RETIENE	N°				Nº				N°				N°			
TAMICES	O PASA	Prog:	Ca	alic 1	- A	Prog:	Ca	lic 2-	Α	Prog:	Ca	ilic 1-	В	Prog:	Ca	lic 2-	В
		Gran	nos	ď	%	Gramo	os	%	Ď	Gran	nos	%		Gran	nos	%	0
PESO T	OTAL	30	0			300				300	0			300	0		
TAMICES																	
10	R		0				2				2				3		
	Р		300		100		298		99,3		298	Ç	9,3		297		99
40	R		23				24				23				21		
	Р		277		92,3		274		91,3		275	Ç	91,7		276		92
200	R		118				140				124				129		
	Р		159		53		134		44,7		151	į	50,3		147		49
Sobre																	
Pesafil	tro Nº	LL()	LP()	L. L ()	LP()	L. L ()	LP()	L. L ()	LP()
Pf+S	h = a					3	32,8	S.L.P									
Pf+S	s = b					2	29,9										
Agua= a	ı - b =c						2,9										
Pf=	= d					1	19,7										
Ss = b	- d = e					1	10,2										
Límite % =	c/e x 100		22,4		18,3	28,4/	28				23,3		17,9		22		16,7
Índice P	lástico		4	,1							5	,4			5	,3	
Clasificació	ón H. R. B		Α-	4 (4)		-	Δ -	4 (2)			A -	4 (4)			A - •	4 (4)	

Tabla 135, Calicatas 1-A, 1-B, 2-A y 2-B.

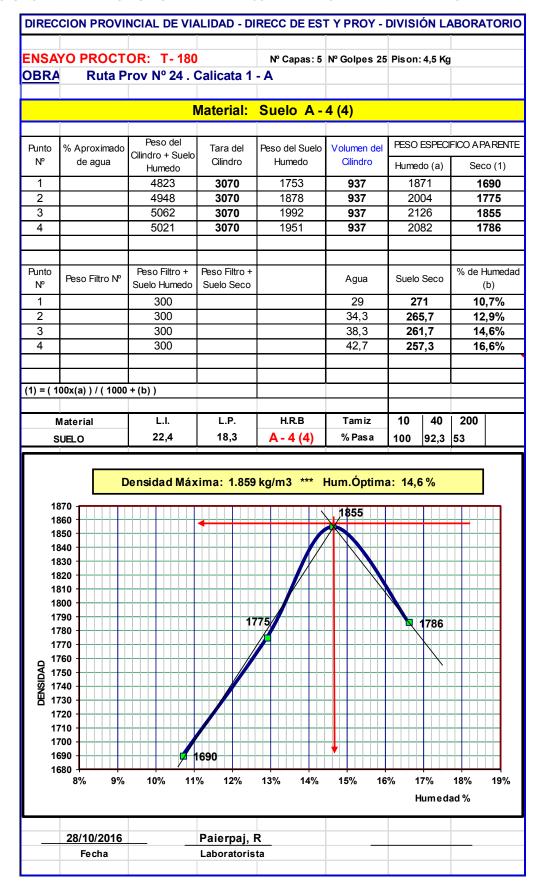


Tabla 136: Ensayo Proctor de Calicata 1-A.

OBRA: Estudio de Calicatas en Ruta Provinciales RUTA PROV Nº 24 - Calicata 1- A

MATERIAL: Suelo de Subrasante /// H.R.B. = A- 4 (4)

F. Ar

SOLICITANTE: Dir. Ppal de EE y PP

Fecha: 03-11-2016

Laboratorista: Paierpaj, R

Nº de	Molde	Peso	Peso	Peso	Vol.	Dens.	Dens.		Lec	turas		Hincham
Golpes	N°	M+S+A	Molde	S+A	Molde	Húm.	Seca	1ª Día	2º Día	3º Día	4º Día	%
12	1	8368	4420	3948	2038	1937	1689	13	13	13	13	0,1
12								"	"	"	"	
25	2	8575	4336	4239	2047	2071	1806	10	11	11	11	0,1
25								"	"	"	"	
56	3	8739	4340	4399	2051	2145	1870	10	10	10	10	0,09
56								"	"	"	"	

Proctor T-180 = 1.859 kg/m3 /// Hum. Öptima = 14,6 %

Tabla 137: Valores Soporte de diseño, Calicata 1-A.

Moldes №: 1	Ī							Factor	Aro: 1	,76	-	
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Stándard (Kg/cm2)				70				105	133	161	180	
Lecura Dial	7	16	25	37	47	55	62	70	88	111		
Presión	1,2	2,8	4,4	6,5	8,3	9,7	10,9	12,3	15,5	19,5		
% Estándar				9,3				11,7	11,7	12,1	0,0	12
Lecura Dial												Golpes
Presión												
% Estándar												
Moldes №: 2								Factor	Aro: 1	0,94		
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	2	4	6	9	12	15	18	20	28	35		
Presión	2,0	4,4	6,6	9,8	13,1	16,4	19,7	21,9	30,6	38,3		25
% Estándar				14,0				20,9	23,0	23,8	0,0	Golpes
Lecura Dial												
Presión												
% Estándar												
Moldes N° 3												
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	3	7	11	15	19	22	25	28	38	47		
Presión	3,3	7,7	12,0	16,4	20,8	24,1	27,4	30,6	41,6	51,4		56
% Estándar				23,4				29,1	31,3	31,9		Golpes
Lecura Dial												
Presión												
% Estándar												

Tabla 138: Moldes de VSR, Calicata 1-A.

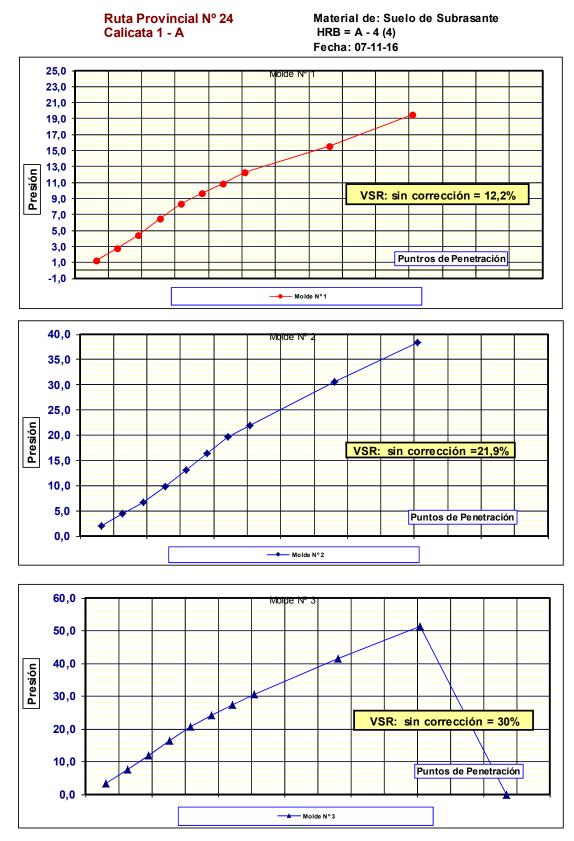


Tabla 139: presión-puntos de penetración de moldes, Calicata 1-A.

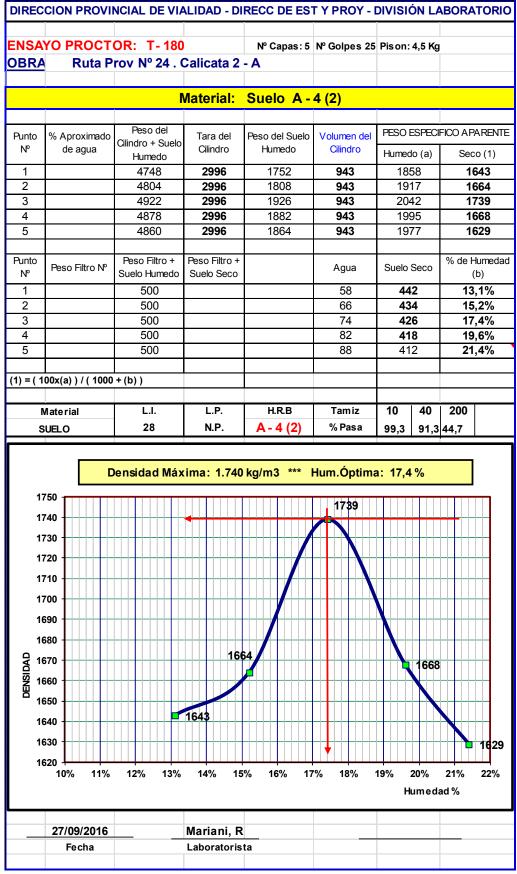


Tabla 140: Ensayo Proctor de Calicata 2-A.

OBRA: Estudio de Calicatas en Ruta Provinciales RUTA PROV Nº 24 - Calicata 2- A

MATERIAL: Suelo de Subrasante /// H.R.B. = A- 4 (2)

F. Aro

SOLICITANTE: Dir. Ppal de EE y PP

0,189

Laboratorista: Mariani, R

			,									
Nº de	Molde	Peso	Peso	Peso	Vol.	Dens.	Dens.		Lec	turas		Hincham
Golpes	N°	M+S+A	Molde	S + A	Molde	Húm.	Seca	1ª Día	2º Día	3º Día	4º Día	%
12	7	10644	7030	3614	2130	1697	1456	0	0	0	0	0
12								"		"	"	0
25	2	11132	7188	3944	2124	1857	1594	"	=	"	"	0
25								"	=	"	"	0
56	3	11384	7082	4302	2133	2017	1731	"	=	"	"	0
56								"	"	"	"	0

Tabla 141: Valores Soporte de diseño, Calicata 2-A.

Fecha: 29-09-2016

		Procto	or T-18	0 = 1.7	740 kg/	m3 //	/ Hun	n. Öptiı	ma =	17,4 %		
Moldes №:7												
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Stándard (Kg/cm2)				70				105	133	161	180	
Lecura Dial	5	8	10	12	14	16	18	20	25	30	34	
Presión	0,9	1,5	1,9	2,3	2,6	3,0	3,4	3,8	4,7	5,7	6,4	
% Estándar				3,2				3,6	3,6	3,4	3,5	12
Lecura Dial												Golpes
Presión												
% Estándar												
				·						·		
Moldes №: 2												
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	15	21	25	29	33	36	39	43	54	65	75	
Presión	2,8	4,0	4,7	5,5	6,2	6,8	7,4	8,1	10,2	12,3	14,2	25
% Estándar				7,8				8,5	7,7	7,6	7,7	Golpes
Lecura Dial												
Presión												
% Estándar												
Moldes Nº 3					1		1			1		
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	33	60	80	97	110	124	137	150	185	216	250	
Presión	6,2	11,3	15,1	18,3	20,8	23,4	25,9	28,4	35,0	40,8	47,3	56
% Estándar				26,2				27,0	26,3	25,4	25,8	Golpes
Lecura Dial												
Presión												
% Estándar												

Tabla 142: Moldes de VSR, Calicata 1-A.

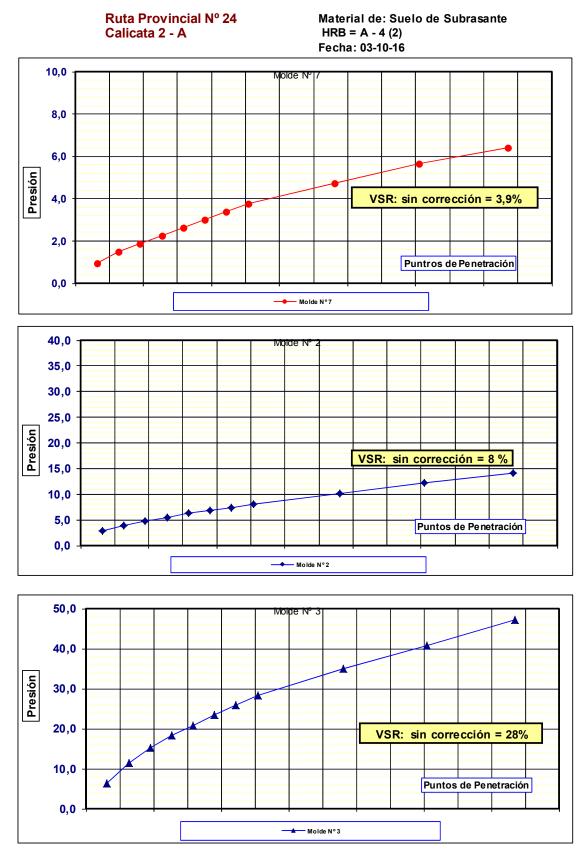


Tabla 143: presión-puntos de penetración de moldes, Calicata 1-A.

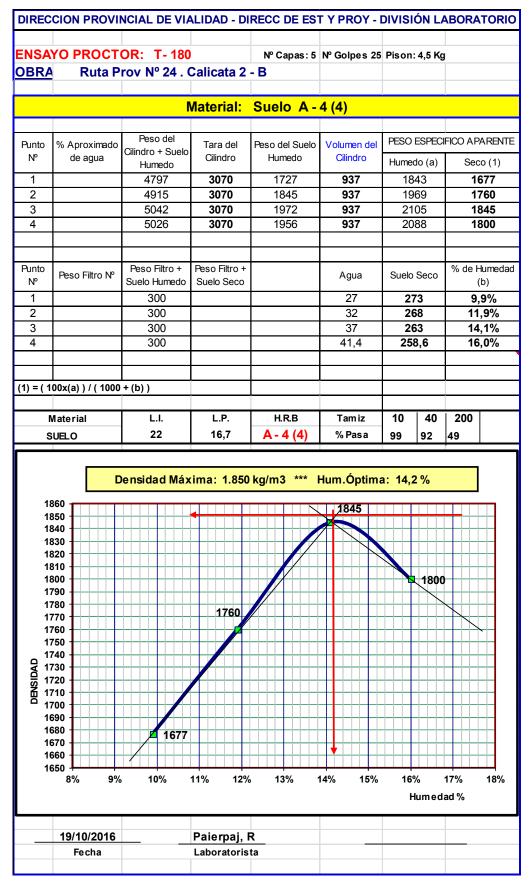


Tabla 144: Ensayo Proctor de Calicata 2-B.

OBRA: Estudio de Calicatas en Ruta Provinciales RUTA PROV Nº 24 - Calicata 2-B

MATERIAL: Suelo de Subrasante /// H.R.B. = A- 4 (4)

Fecha: 20-10-2016

F. Aro

Laboratorista: Paierpaj, Roberto

SOLICITANTE: Dir. Ppal de EE y PP

Nº de	Molde	Peso	Peso	Peso	Vol.	Dens.	Dens.		Lec	turas		Hincham
Golpes	N°	M+S+A	Molde	S + A	Molde	Húm.	Seca	1ª Día	2º Día	3º Día	4º Día	%
12	1	8404	4420	3984	2038	1955	1715	59	59	59	59	0,5
12								"	"	"	"	0
25	2	8588	4336	4252	2047	2077	1822	52	52	52	52	0,45
25								"	"	"	"	0
56	3	8713	4340	4373	2051	2132	1870	18	18	18	18	0,16
56								"	"	"	"	0

Proctor T-180 = 1.850 kg/m3 /// Hum. Öptima = 14,2 %

Tabla 145: Valores Soporte de diseño, Calicata 2-B.

Moldes №: 1	Ī .							Factor	Aro:	1,76	-	
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Stándard (Kg/cm2)				70				105	133	161	180	
Lecura Dial	6	15	24	34	42	50	57	66	85	109		
Presión	1,1	2,6	4,2	6,0	7,4	8,8	10,0	11,6	15,0	15,8		
% Estándar				8,6				11,0	11,3	9,8		12
Lecura Dial												Golpes
Presión												
% Estándar												
Moldes №: 2								Factor	Aro:	10,94		
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	1	3	5	7	10	13	15	17	24	31		
Presión	1,1	3,3	5,5	7,7	10,9	14,2	16,4	18,6	26,3	33,9		25
% Estándar				11,0				17,7	19,8	21,1	0,0	Golpes
Lecura Dial												
Presión												
% Estándar												
Moldes № 3								Factor	Aro:	10,94		
Penetración	0,63	1,27	1,9	2,54	3,17	3,81	4,44	5,08	7,62	10,1	12,7	
Lecura Dial	2	5	8	11	14	17	20	23	33	42		
Presión	2,2	5,5	8,8	12,0	15,3	18,6	21,9	25,2	36,1	45,9		56
% Estándar				17,1				24,0	27,1	28,5		Golpes
Lecura Dial												
Presión												
% Estándar												

Tabla 146: Moldes de VSR, Calicata 2-B.

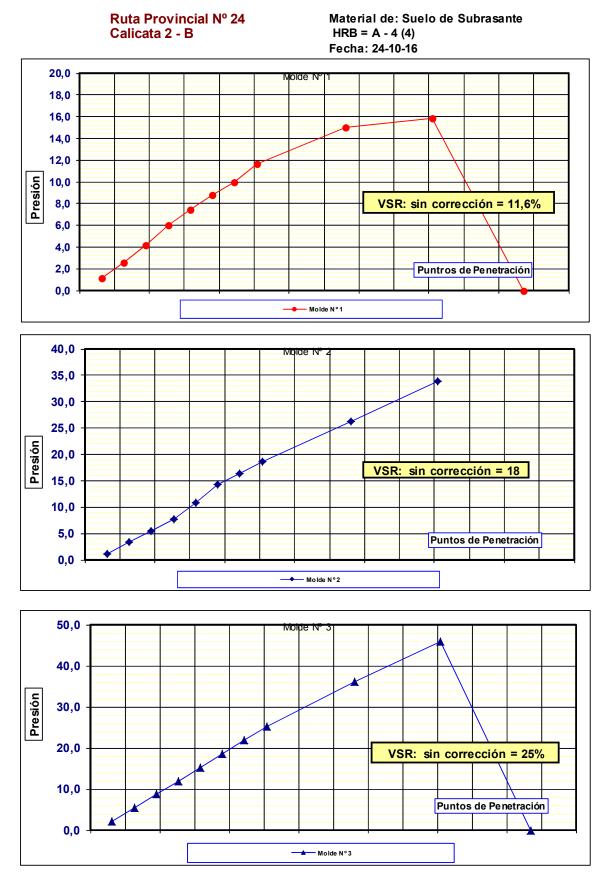


Tabla 147: presión-puntos de penetración de moldes, Calicata 2-B.

11 ANEXO V

Regresiones para la determinación de las tasas de crecimiento de tránsito

Modelo de Crecimiento Anual Absoluto

 $TMDAn = \beta 0 + \beta 1 * n$

Donde "n" es el número de años y β1 el crecimiento anual constante.

Modelo 21: MCO, usando las observaciones 1988-2011 (T = 19) Se han quitado las observaciones ausentes o incompletas: 5 Variable dependiente: r18TMDA

Coefici	ente Desv.	Típica	Estadístico t	Valor p
const -7184,3 anio 3,8		, 5 , 30404	-0,5696 0,6168	0,5764 0,5455
Media de la vble. de Suma de cuad. residu	•		de la vble. dep. de la regresión	163,9553 166,8520
R-cuadrado	0,021889	R-cua	drado corregido	-0,035647
F(1, 17)	0,380446	Valor	p (de F)	0,545537
Log-verosimilitud	-123,1282	Crite	rio de Akaike	250,2564
Criterio de Schwarz	252,1453	Crit.	de Hannan-Quinn	250,5761

Modelo 22:

MCO, usando las observaciones 1988-2011 (T = 18) Se han quitado las observaciones ausentes o incompletas: 6 Variable dependiente: r20TMDA

Coeficient	te Desv. T	ípica Estadístico t	Valor p
const -3063,35	13196,0	-0,2321	0,8194
anio 1,8079	6,5	9670 0,2741	0,7875
Media de la vble. dep.	553,2778	D.T. de la vble. dep.	160,0190
Suma de cuad. residuos	433269,6	D.T. de la regresión	164,5580
R-cuadrado	0,004673	R-cuadrado corregido	-0,057535
F(1, 16)	0,075115	Valor p (de F)	0,787537
Log-verosimilitud	-116,3396	Criterio de Akaike	236,6792
Criterio de Schwarz	238,4599	Crit. de Hannan-Quinn	236,9247

Modelo 23:

MCO, usando las observaciones 1988-2011 (T = 19) Se han quitado las observaciones ausentes o incompletas: 5 Variable dependiente: r24TMDA

	Coeficiente	Desv. Típica	Estadístico t	Valor p
const	5833,96	16636,3	0,3507	0,7301
anio	-2.62314	8.31462	-0.3155	0.7562

Media de la vble. dep.	585 , 4737	D.T. de la vble. dep.	214,4917
Suma de cuad. residuos	823300,5	D.T. de la regresión	220,0669
R-cuadrado	0,005821	R-cuadrado corregido	-0,052660
F(1, 17)	0,099531	Valor p (de F)	0,756233
Log-verosimilitud	-128 , 3879	Criterio de Akaike	260 , 7758
Criterio de Schwarz	262,6647	Crit. de Hannan-Quinn	261,0955

Modelo 24:

MCO, usando las observaciones 1988-2011 (T = 22) Se han quitado las observaciones ausentes o incompletas: 2 Variable dependiente: r01TMDA

Coeficien	te Desv. T	ípica Esta	adístico t	Valor p	
const -81938,9 anio 41,74	21411,	4 7039	-3,827 3,900	0,0011 0,0009	***
Media de la vble. dep. Suma de cuad. residuos R-cuadrado F(1, 20) Log-verosimilitud Criterio de Schwarz	1558,364 2229085 0,431941 15,20760 -158,0033 322,1887	D.T. de la D.T. de la R-cuadrado Valor p (de Criterio de Crit. de Ha	regresión corregido e F)	432,273 333,847 0,40353 0,00088 320,000 320,520	77 38 39 56

Modelo 25:

MCO, usando las observaciones 1988-2011 (T = 20) Se han quitado las observaciones ausentes o incompletas: 4 Variable dependiente: r18aTMDA

	Coeficiente	e Desv.	Típica	Estadístico t	Valor p
const anio	-13337,3 6,993	7107, 47 3,	,70 ,55348	-1,876 1,968	0,0769 * 0,0647 *
Media de la s Suma de cuad	-	651,0500 194832,5	D.T. de	la vble. dep.	111,6284 104,0386
R-cuadrado F(1, 18)	14+114	0,177078 3,873275	Valor p	'	0,131360 0,064661
Log-verosimi: Criterio de S		-120 , 2204 246 , 4323		o de Akaike e Hannan-Quinn	244,4408 244,8296

Modelo de Tasas Anuales Acumulativas

 $TMDAn = \beta 0 * (1+r)^n$

Donde "n" es el número de años y "r" es la tasa anual acumulativa

ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI

Modelo 6: MCO, usando las observaciones 1988-2011 (T = 19) Se han quitado las observaciones ausentes o incompletas: 5 Variable dependiente: 1 r18TMDA

	Coeficient	e Desv.	Típica	Estadístico t	Valor p
const anio	-8,84287 0,0075953	21,0° 7 0,0°	720 105315	-0,4196 0,7212	0,6800 0,4806
Media de la Suma de cuad R-cuadrado	-	6,354262 1,320861 0,029688	D.T. R-cua	de la vble. dep. de la regresión drado corregido	0,275002 0,278743 -0,027390
F(1, 17)		0,520132	Valor	p (de F)	0 , 480587
Log-verosimi	ilitud	-1,631358	Crite	rio de Akaike	7,262715
Criterio de	Schwarz	9,151593	Crit.	de Hannan-Quinn	7,582388

Modelo 7: MCO, usando las observaciones 1988-2011 (T = 18) Se han quitado las observaciones ausentes o incompletas: 6 Variable dependiente: l r20TMDA

Co	eficiente	Desv.	Típica	Estadístico t	Valor p
	,49325 ,00688238	24,82 0,01	213 24082	-0,3019 0,5547	0,7666 0,5868
Media de la vbl	e. dep. 6,	274175	D.T.	de la vble. dep.	0,303160
Suma de cuad. r	esiduos 1,	532925	D.T.	de la regresión	0,309528
R-cuadrado	0,	018866	R-cuad	drado corregido	-0,042455
F(1, 16)	0,	307652	Valor	p (de F)	0,586795
Log-verosimilit	-3,	372145	Criter	rio de Akaike	10,74429
Criterio de Sch	warz 12	,52503	Crit.	de Hannan-Quinn	10,98983

Modelo 8: MCO, usando las observaciones 1988-2011 (T = 19) Se han quitado las observaciones ausentes o incompletas: 5 Variable dependiente: $l_r24TMDA$

Coefi	ciente Desv	. Típica	Estadístico t	Valor p
const 16,222 anio -0,00	•	7959 0123927	0,6543 -0,3995	0,5217 0,6945
Media de la vble. Suma de cuad. resid R-cuadrado F(1, 17) Log-verosimilitud Criterio de Schwarz	duos 1,82895 0,00929 0,15956 -4,72325	D.T. R-cua Valor Crite	de la vble. dep. de la regresión drado corregido p (de F) rio de Akaike de Hannan-Quinn	0,320254 0,328003 -0,048978 0,694532 13,44652 13,76619

Modelo 9: MCO, usando las observaciones 1988-2011 (T = 22) Se han quitado las observaciones ausentes o incompletas: 2 Variable dependiente: l r01TMDA

	Coeficiente	e Desv. 5	Típica	Estadís	stico t	Valor p	
const anio	-54,7504 0,031024	15,0372 7 0,0075		-3,6 4,1		0,0016 0,0005	***
Media de la Suma de cuad R-cuadrado F(1, 20)	-	7,308881 1,099422 0,459942 17,03306	D.T. R-cua	de la vbl de la red drado com p (de F)	gresión regido	0,3113 0,2344 0,4329 0,0005	59 39

ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI

Log-verosimilitud 1,742193 Criterio de Akaike 0,515615 Criterio de Schwarz 2,697700 Crit. de Hannan-Quinn 1,029648

Modelo 10:

MCO, usando las observaciones 1988-2011 (T = 20)

Se han quitado las observaciones ausentes o incompletas: 4

Variable dependiente: l_r18aTMDA

Coeficien	te Desv. I	lípica Estadístico t	Valor p
const -19,1843	11,1449	•	0,1023
anio 0,01282	27 0,0055		0,0335 **
Media de la vble. dep.	0,227339	D.T. de la vble. dep.	0,180638
Suma de cuad. residuos		D.T. de la regresión	0,163134
R-cuadrado		R-cuadrado corregido	0,184413
F(1, 18)	5,296104	Valor p (de F)	0,033538
Log-verosimilitud	8,938553	Criterio de Akaike	-13,87711
Criterio de Schwarz	-11,88564	Crit. de Hannan-Quinn	-13,48835

Modelo de Tasas Estimadas por Elasticidades con el PBlarg

 $TMDAn = \beta 0 * PBI^{\beta 1}$

Donde β1 es la elasticidad entre el TMDA y el PBI

 $E = \Delta\%TMDA/\Delta\%PBI$

Modelo 1: MCO, usando las observaciones 1988-2011 (T = 17) Se han quitado las observaciones ausentes o incompletas: 7 Variable dependiente: l r18TMDA

	Coeficiente	e Desv.	Típica	Estadístico t	Valor p
const l_PBImill	-1,49615 0,622289	3,76 0,29	5212 98517	-0,3977 2,085	0,6965 0,0546 *
Media de la v Suma de cuad. R-cuadrado F(1, 15) Log-verosimil Criterio de S	residuos (6,345431 0,868547 0,224628 4,345555 1,158293 3,349840	D.T. de R-cuada Valor p Critera	e la vble. dep. e la regresión rado corregido p (de F) io de Akaike de Hannan-Quinn	0,264595 0,240631 0,172937 0,054613 1,683413 1,849059

Modelo 2: MCO, usando las observaciones 1988-2011 (T = 16) Se han quitado las observaciones ausentes o incompletas: 8 Variable dependiente: $l_r20TMDA$

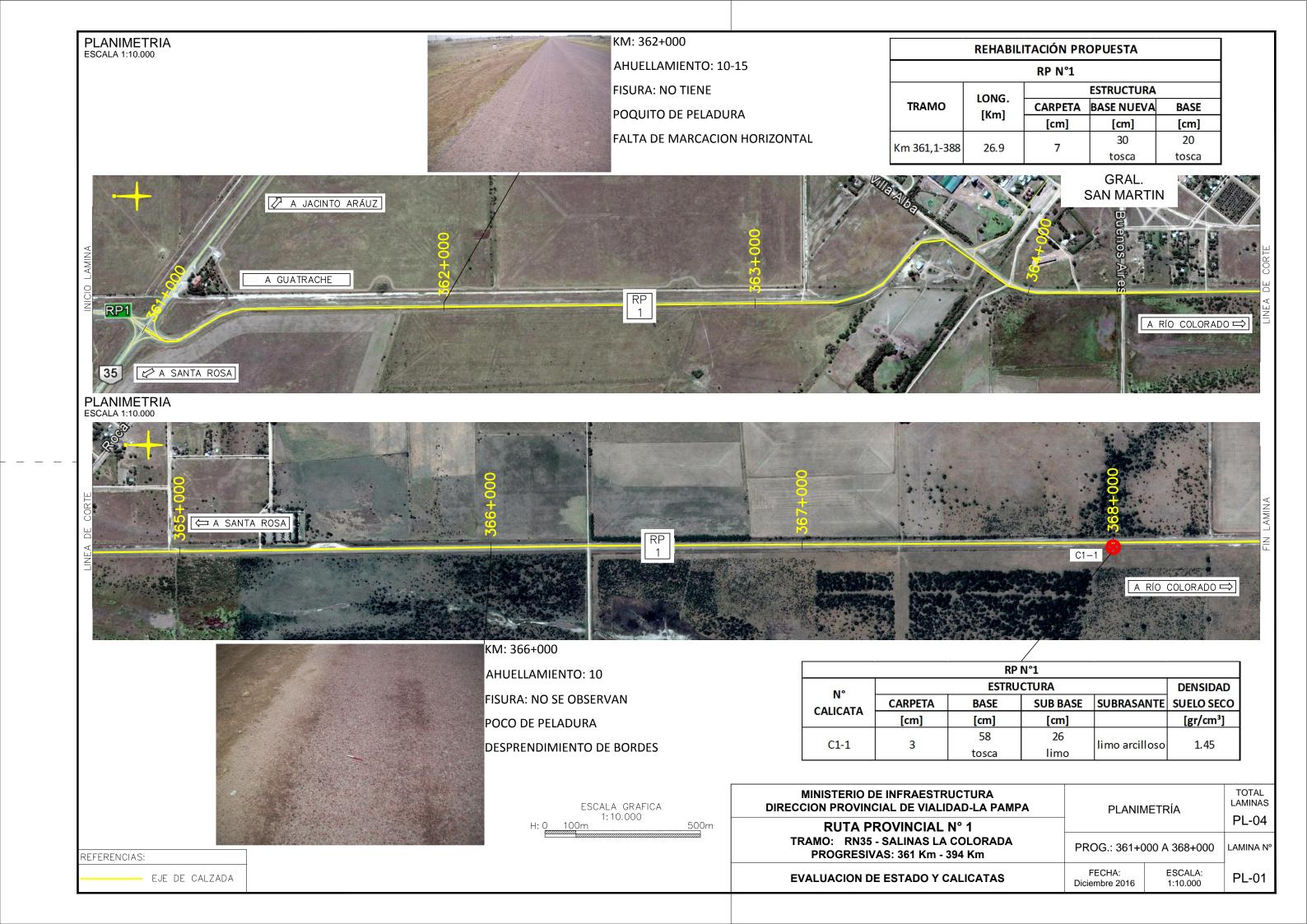
Coeficiente Desv. Típica Estadístico t Valor p

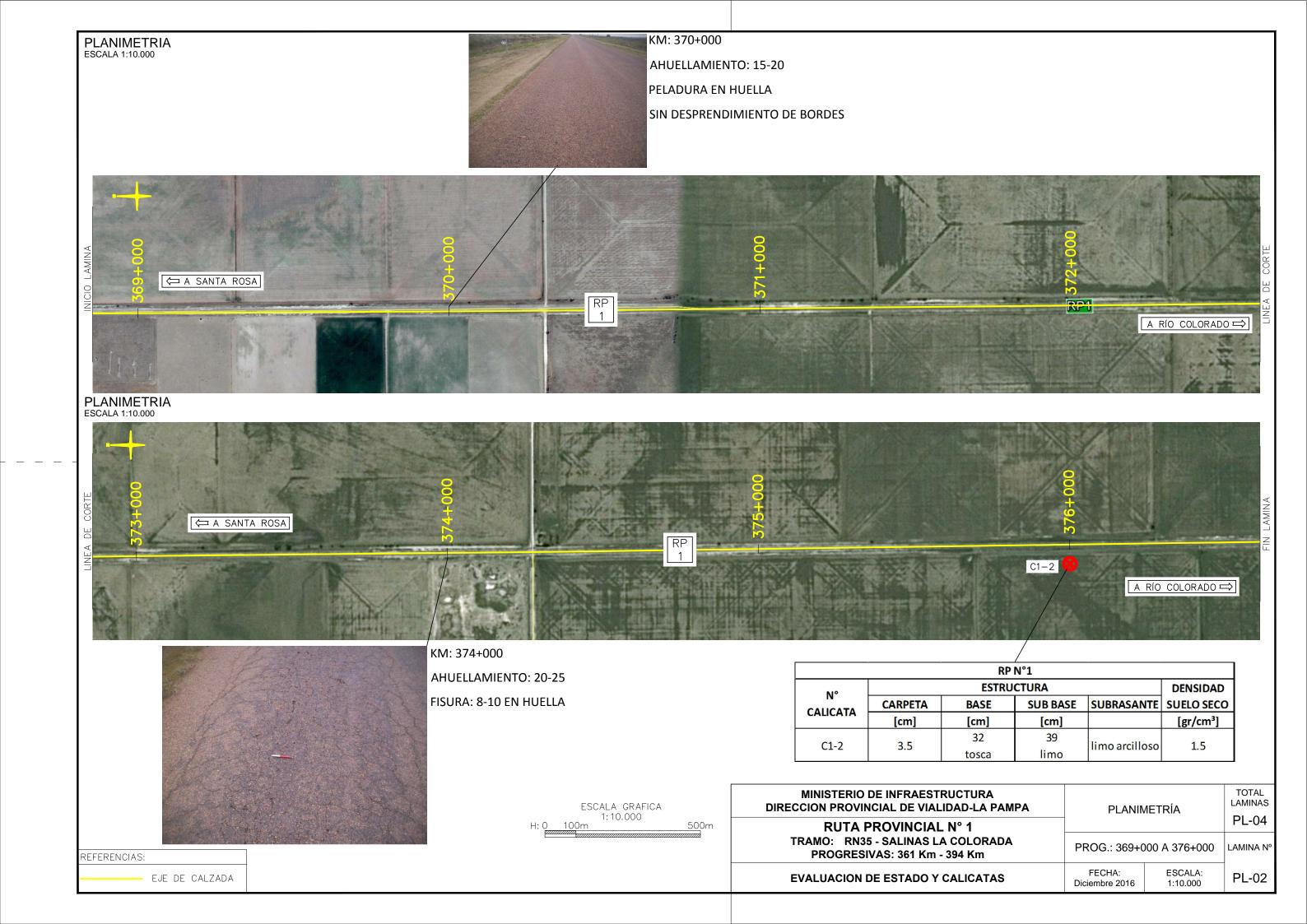
ESTUDIO DE LA INFRAESTRUCTURA PARA LA MEJORA DE LA CONECTIVIDAD DE LA PROVINCIA DE LA PAMPA - CFI

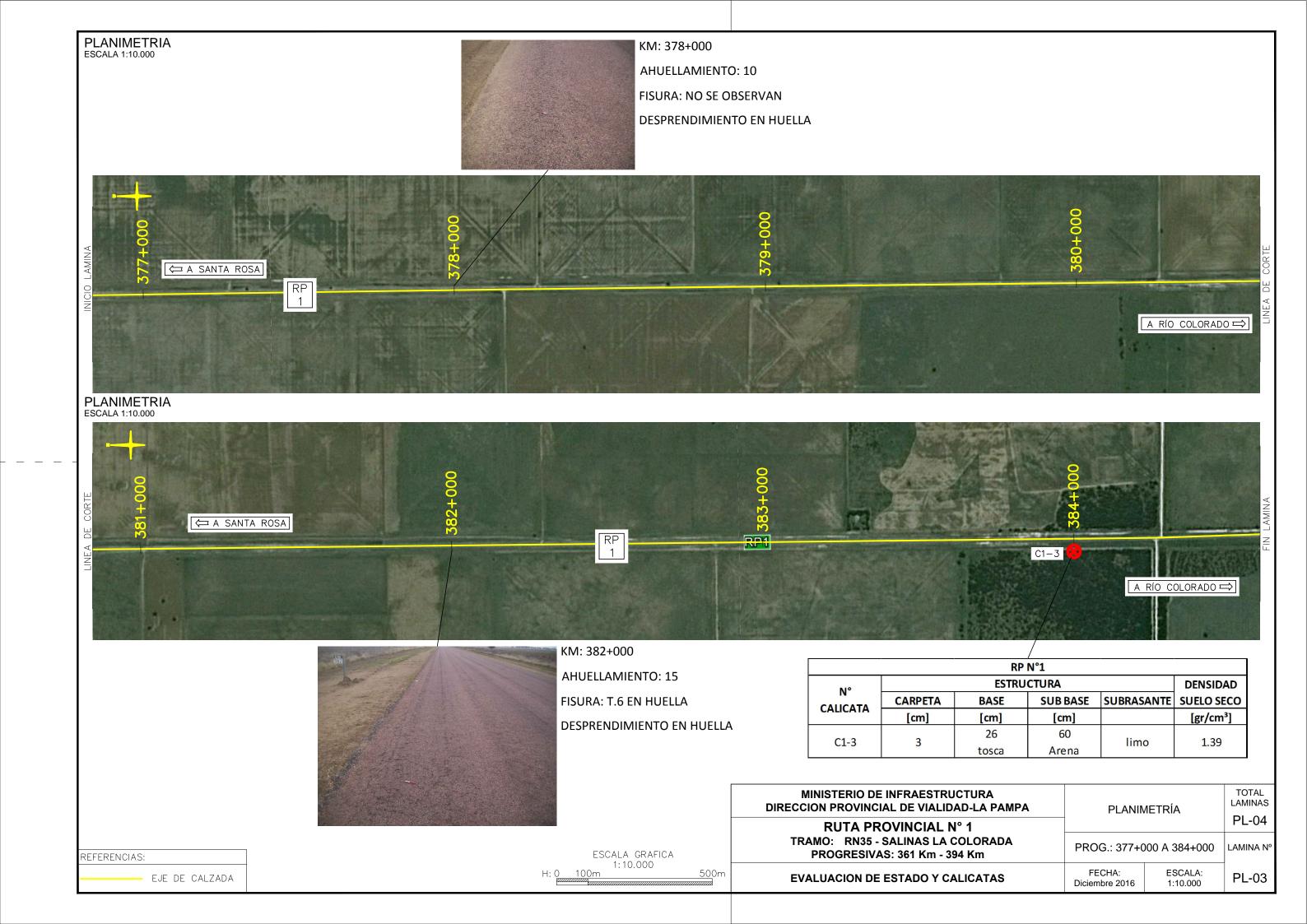
const	1,02191	4,82	868	0,2116	0,8354
l_PBImill	0,419596	0,38	3847	1,093	0,2928
Media de la v	ble. dep.	6 , 299792	D.T. de la	vble. dep.	0,268845
Suma de cuad.	residuos	0,998903	D.T. de la	regresión	0,267115
R-cuadrado		0,078641	R-cuadrado	corregido	0,012829
F(1, 14)		1,194939	Valor p (de	e F)	0,292789
Log-verosimil	itud -	-0 , 513527	Criterio de	e Akaike	5,027054
Criterio de S	chwarz	6 , 572231	Crit. de Ha	annan-Quinn	5,106179

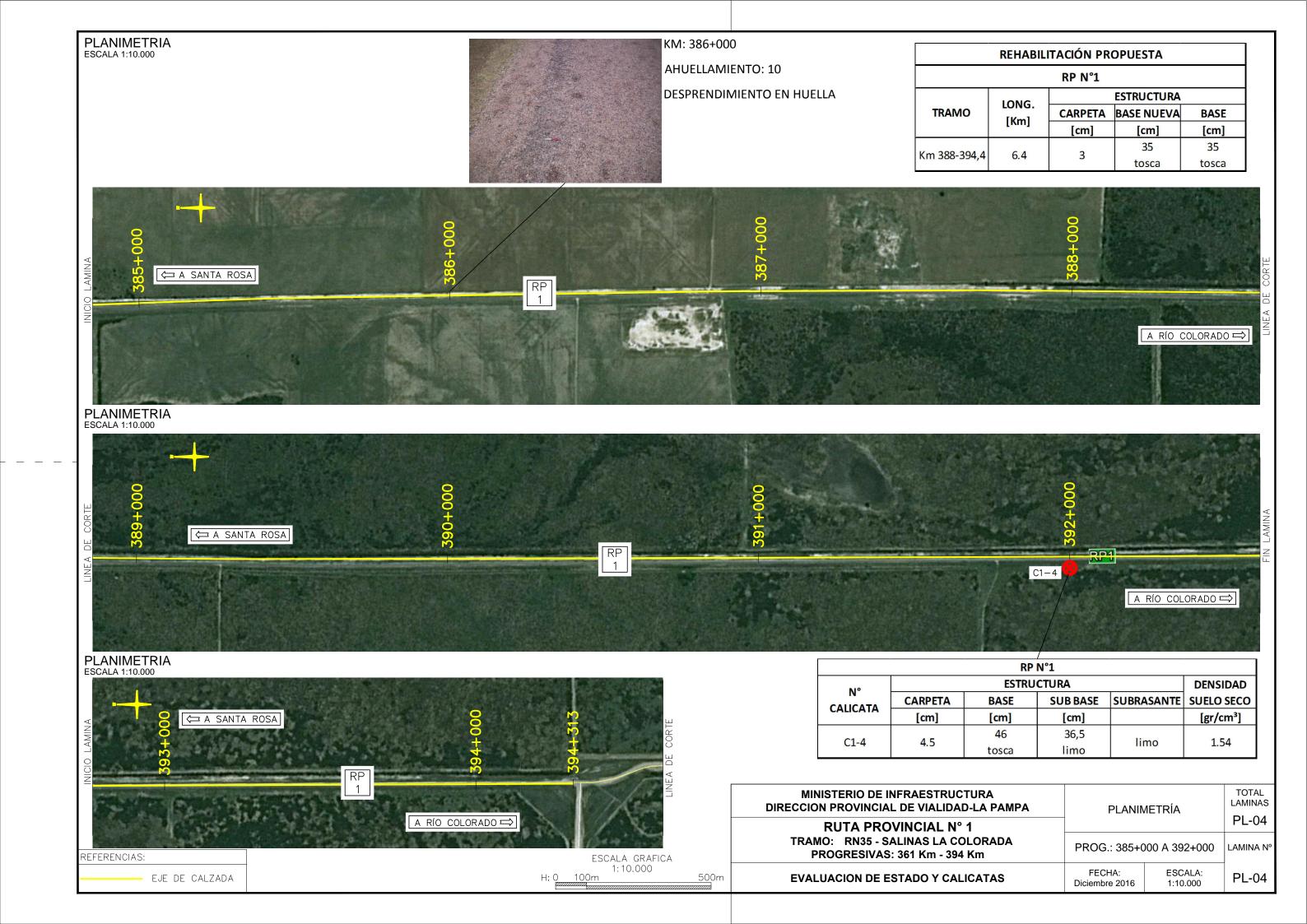
Modelo 3: MCO, usando las observaciones 1988-2011 (T = 17) Se han quitado las observaciones ausentes o incompletas: 7 Variable dependiente: $1_r24TMDA$

C	coeficiente	Desv.	Típica	Estadístico t	Valor p
	5,38073 0,0734792	4,75 0,37		1,131 0,1947	0,2758 0,8483
Media de la vbl Suma de cuad. r	,	06651 88889		la vble. dep. la regresión	0,295000 0,304290
R-cuadrado	0,0	02520	R-cuadra	ado corregido	-0,063979
F(1, 15)	0,0	37889	Valor p	(de F)	0,848278
Log-verosimilit	-2,8	31926	Criterio	o de Akaike	9,663852
Criterio de Sch	warz 11,	33028	Crit. de	e Hannan-Quinn	9,829498


Modelo 4: MCO, usando las observaciones 1993-2011 (T = 19) Variable dependiente: l r01TMDA


Coefic	iente	Desv.	Típica	Estadí	ístico t	Valo	r p
const -0,56 1_PBImill 0,63		•	5538 34411	,	,1896 ,691	0,851 0,015	
Media de la vble. de	p. 7,39	0017	D.T. d	e la vbl	le. dep.	0,235	5304
Suma de cuad. residu	os 0,69	8986	D.T. d	e la reg	gresión	0,202	2773
R-cuadrado	0,29	8647	R-cuad	rado con	rregido	0,257	7391
F(1, 17)	7,23	38877	Valor	p (de F))	0,015	5478
Log-verosimilitud	4,41	4524	Criter	io de Al	kaike	-4,829	9047
Criterio de Schwarz	-2,94	10169	Crit.	de Hanna	an-Quinn	-4,509	9374


Modelo 5: MCO, usando las observaciones 1988-2011 (T = 17) Se han quitado las observaciones ausentes o incompletas: 7 Variable dependiente: l r18aTMDA


	Coeficient	e Desv.	Típica	Estadístico t	Valor p
const l PBImill	3,05926 0,272471	•	 L573 14075	1,685 1,891	0,1127 0,0781 *
T_LD1111111	0,272471	0,1	14075	1,001	0,0701
Media de la v	ble. dep.	6,492722	D.T. de	e la vble. dep.	0,125139
Suma de cuad.	residuos	0,202316	D.T. de	e la regresión	0,116137
R-cuadrado		0,192531	R-cuadr	ado corregido	0,138700
F(1, 15)		3 , 576565	Valor p	(de F)	0,078073
Log-verosimil	itud	13,54273	Criteri	o de Akaike	-23 , 08546
Criterio de S	chwarz -	21,41903	Crit. d	de Hannan-Quinn	-22 , 91981

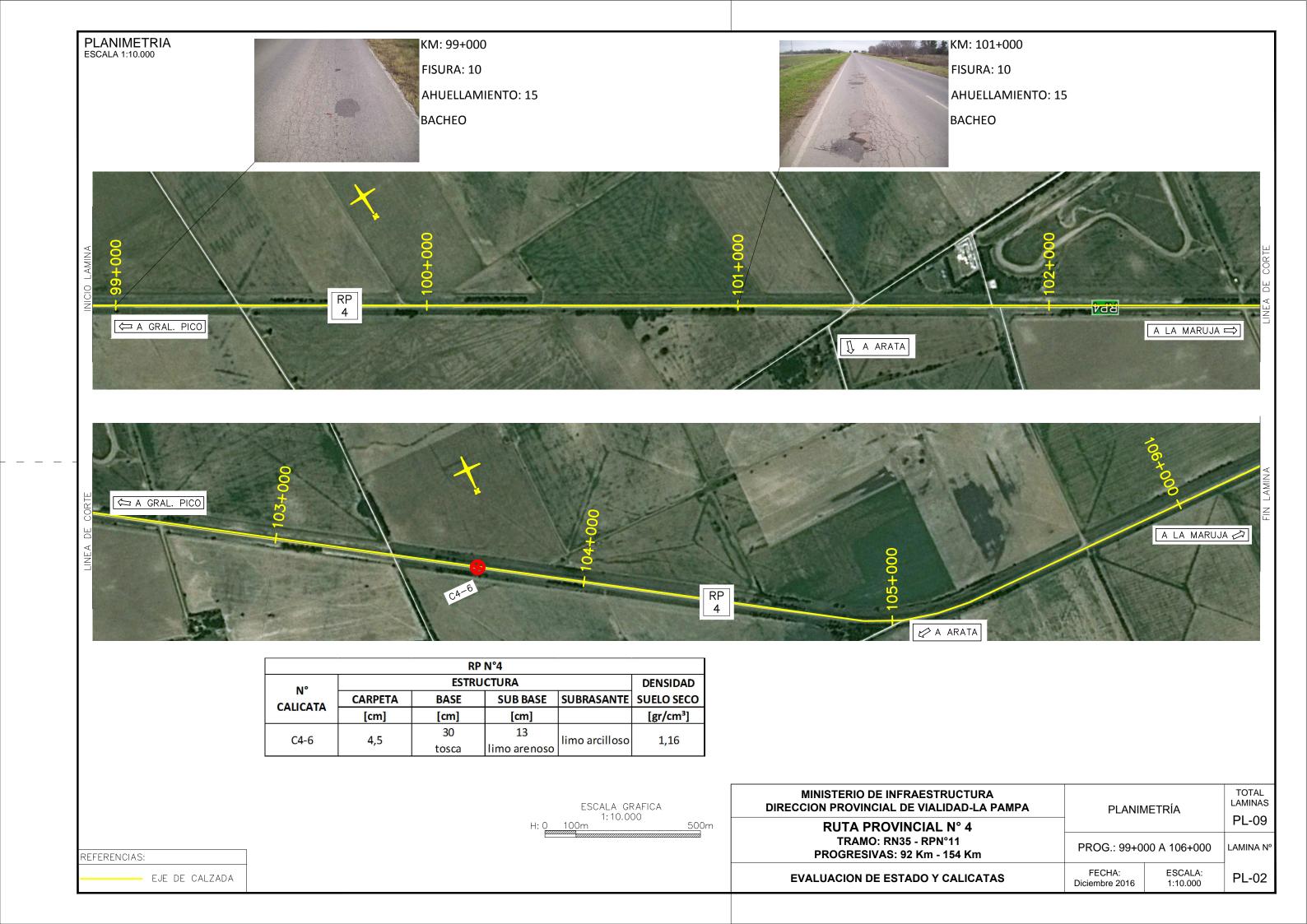
12 ANEXO VI

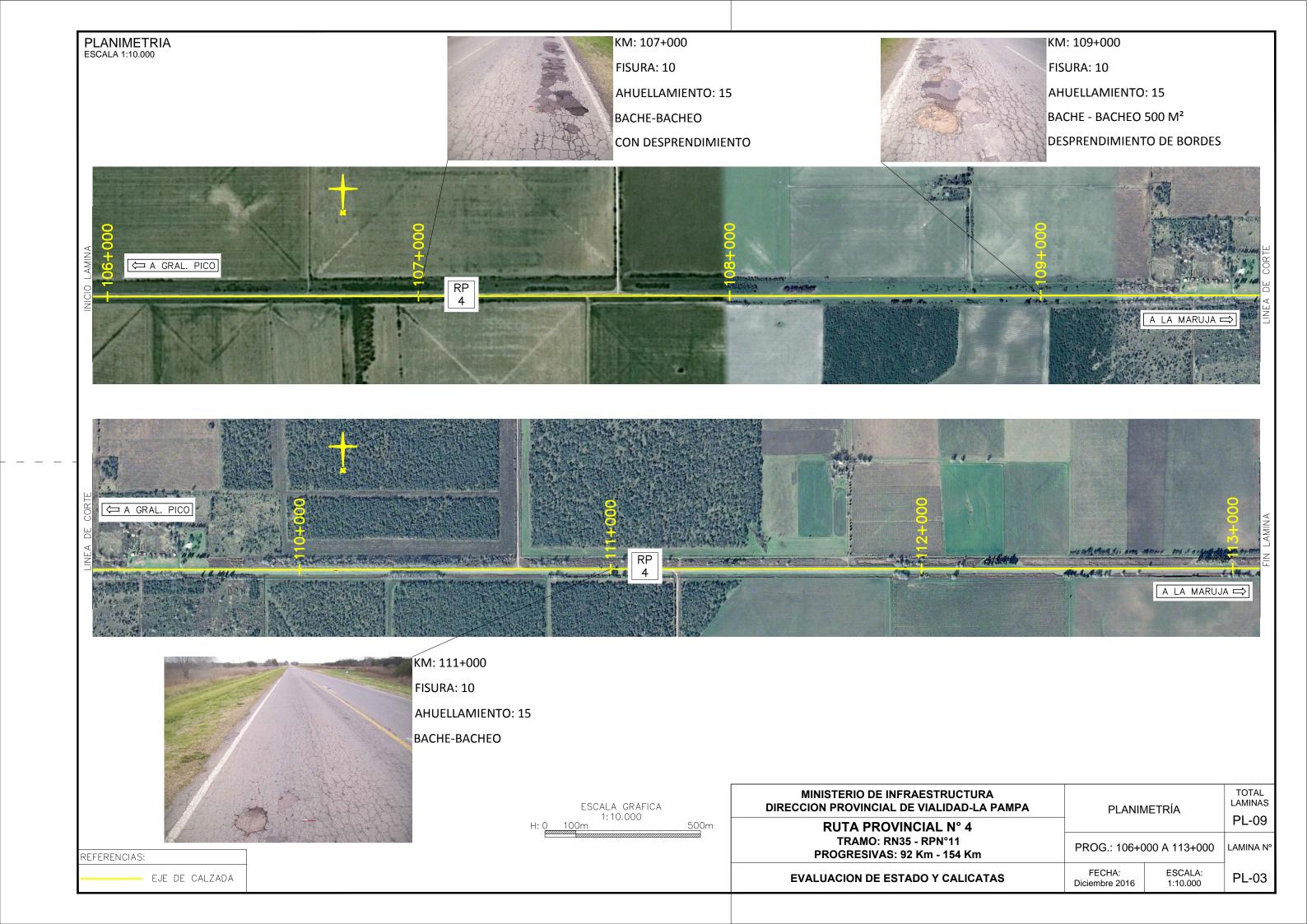
PLANIMETRIA ESCALA 1:10.000

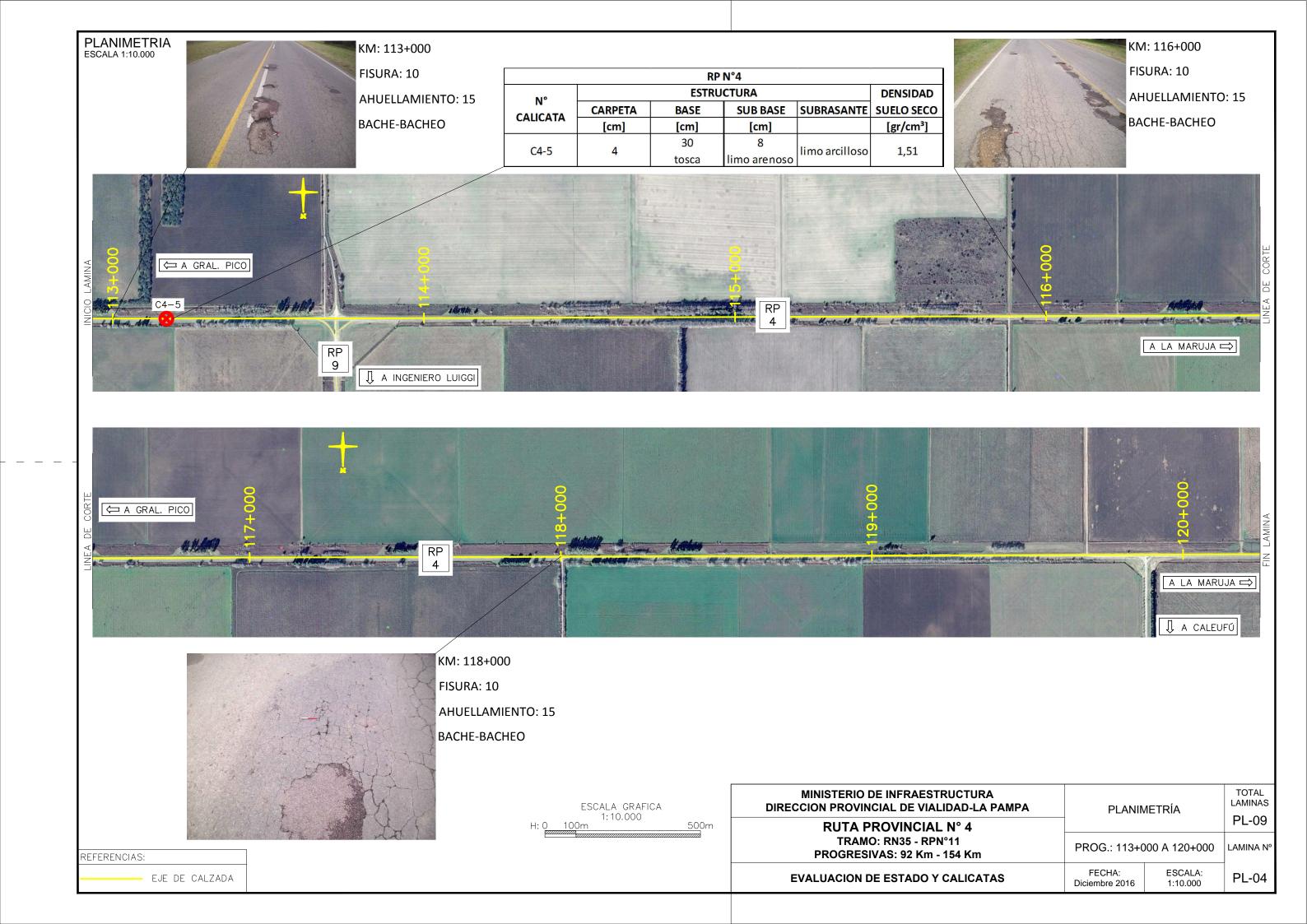
REFERENCIAS:

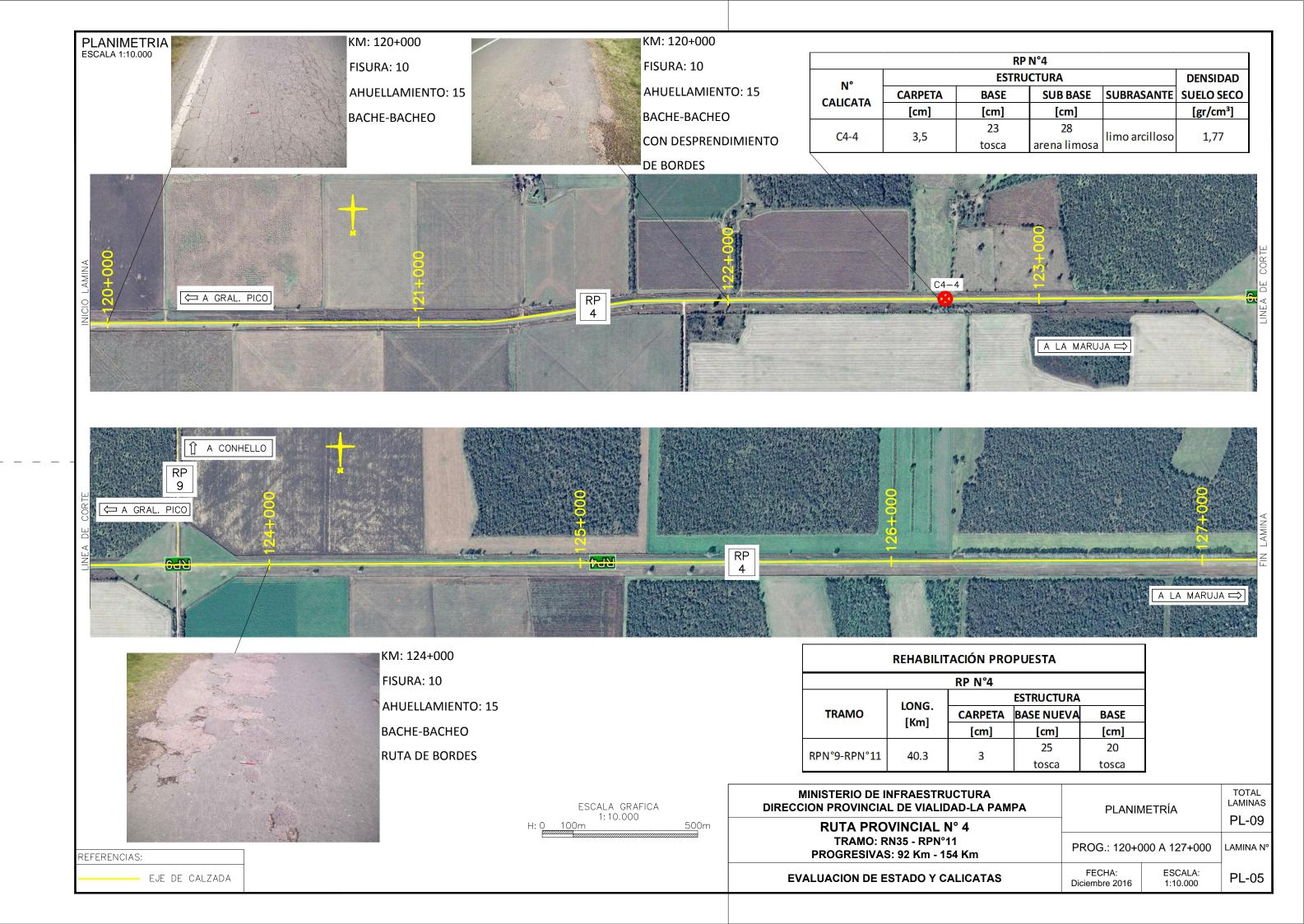
- EJE DE CALZADA

RP N°4							
N°		ESTRUCTURA					
CALICATA	CARPETA BASE SUBBASE SUBRASANTE SUELO SECO						
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]		
C4.7	2.5	41	30	lima a anaille a a	1 20		
C4-7	3.5	tosca	arena limosa	limo arcilloso	1.29		

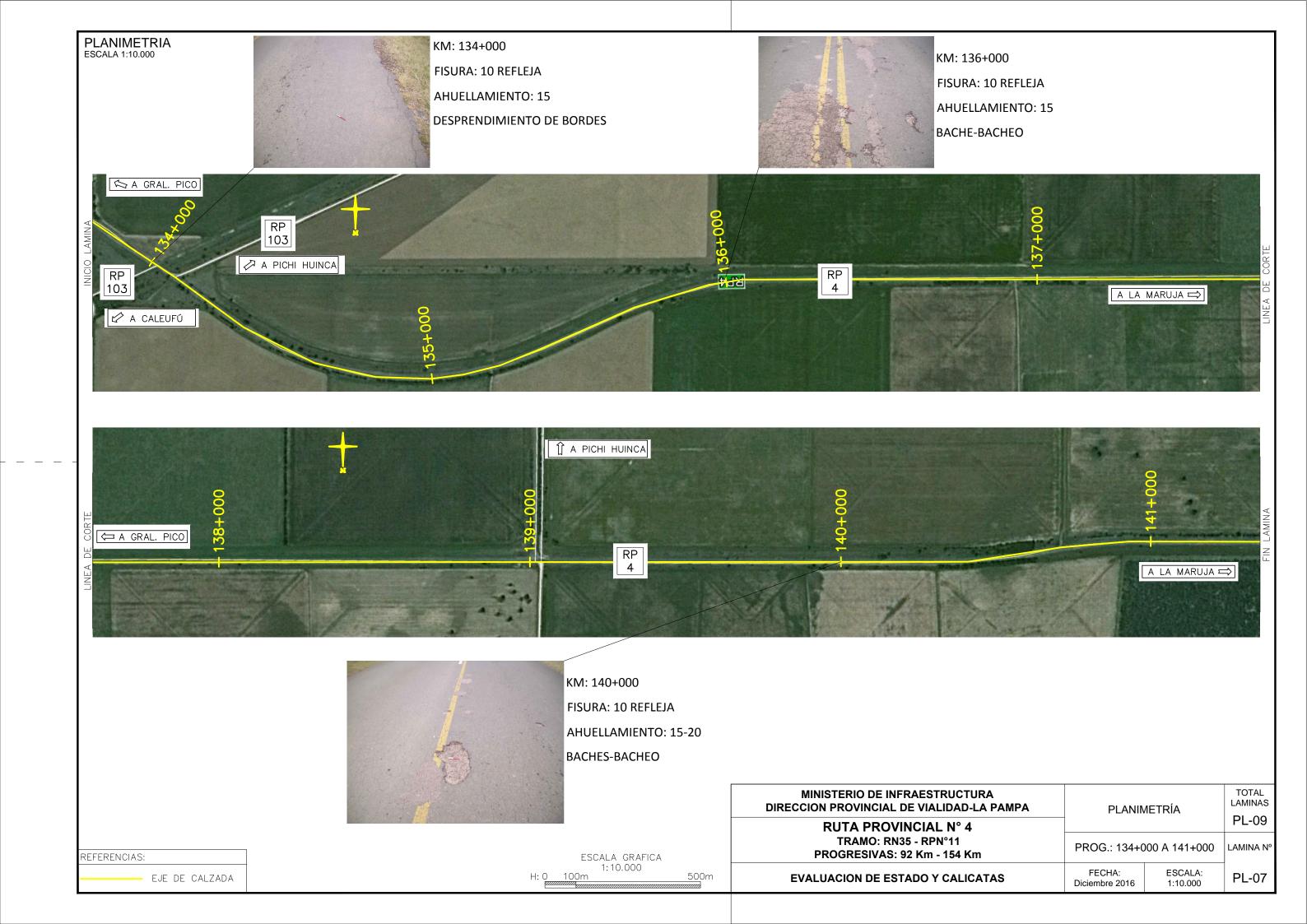


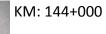




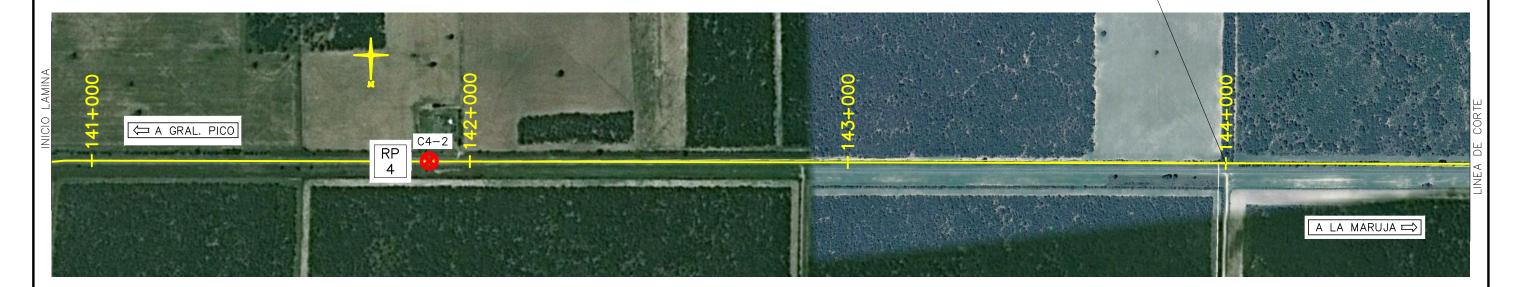

REHABILITACIÓN PROPUESTA						
RP N°4						
	LONG.	ESTRUCTURA				
TRAMO		CARPETA	BASE NUEVA	BASE		
	[Km]	[cm]	[cm]	[cm]		
DNINIOSE DDNIO	21.7	_	25	20		
RNN°35-RPN°9	21.7	5	tosca	tosca		


MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS
RUTA PROVINCIAL N° 4		PL-09	
TRAMO: RN35 - RPN°11 PROGRESIVAS: 92 Km - 154 Km	PROG.: 92+000 A 99+000		LAMINA Nº
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-01





PLANIMETRIA ESCALA 1:10.000


RP N°4								
N°		DENSIDAD						
CARPETA		BASE SUBBASE		SUBRASANTE	SUELO SECO			
CALICATA	[cm]	[cm]	[cm]		[gr/cm ³]			
C4 2	4	29	33		1.00			
C4-2	4	tosca	arena limosa	arena limosa	1,69			

FISURA: 10 REFLEJA

AHUELLAMIENTO: 15-20

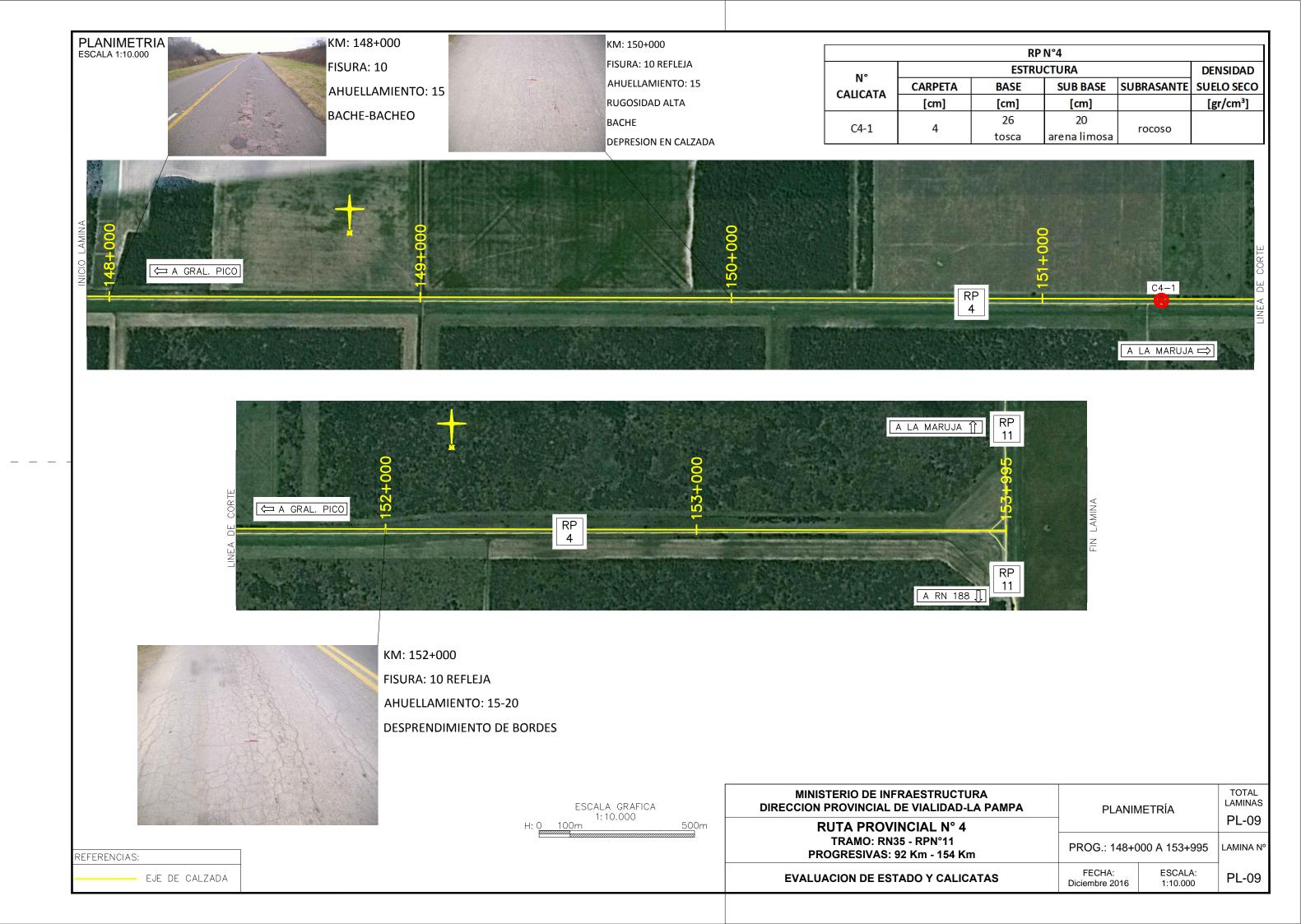
DESPRENDIMIENTO DE BORDES

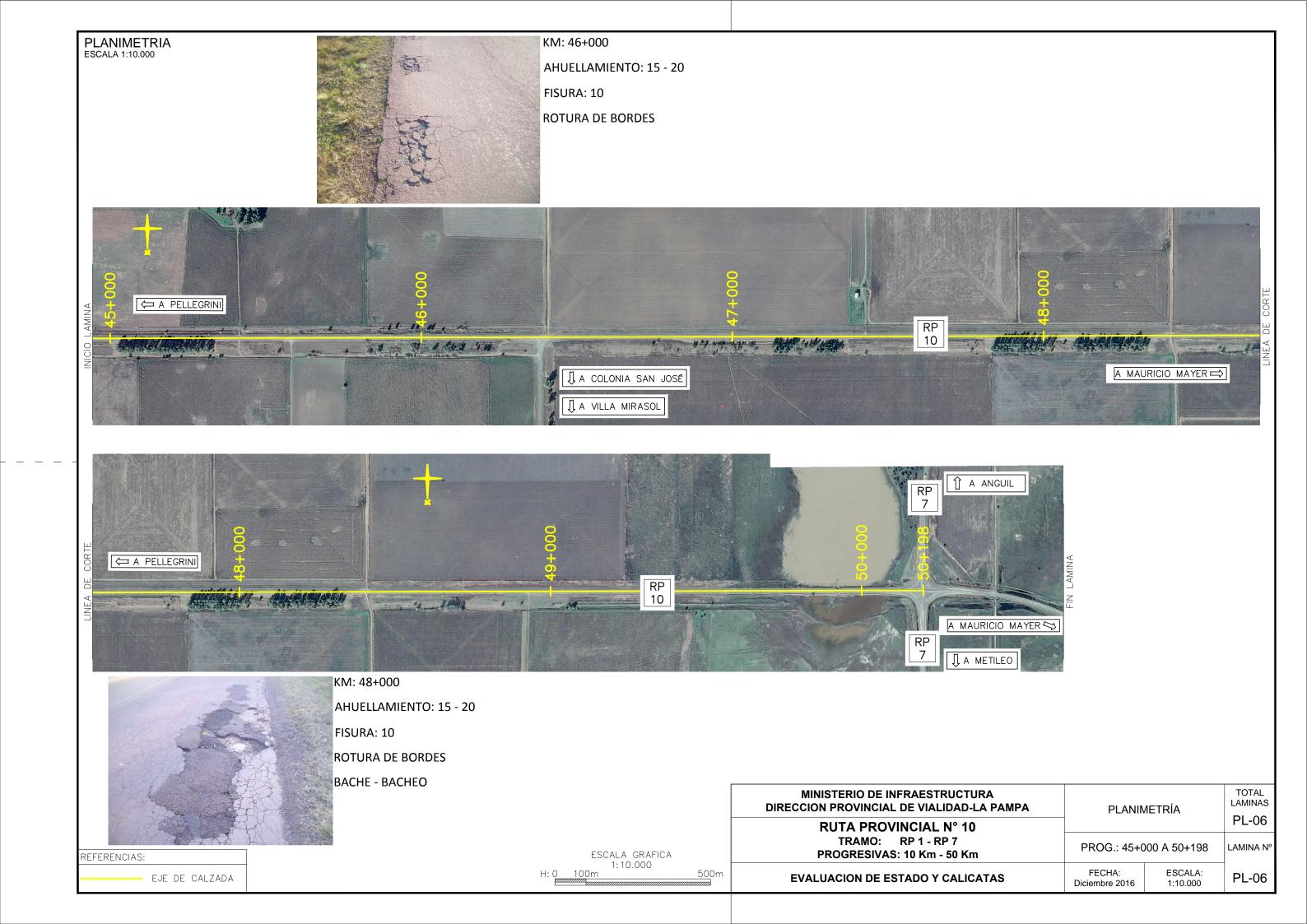
K F A A B B

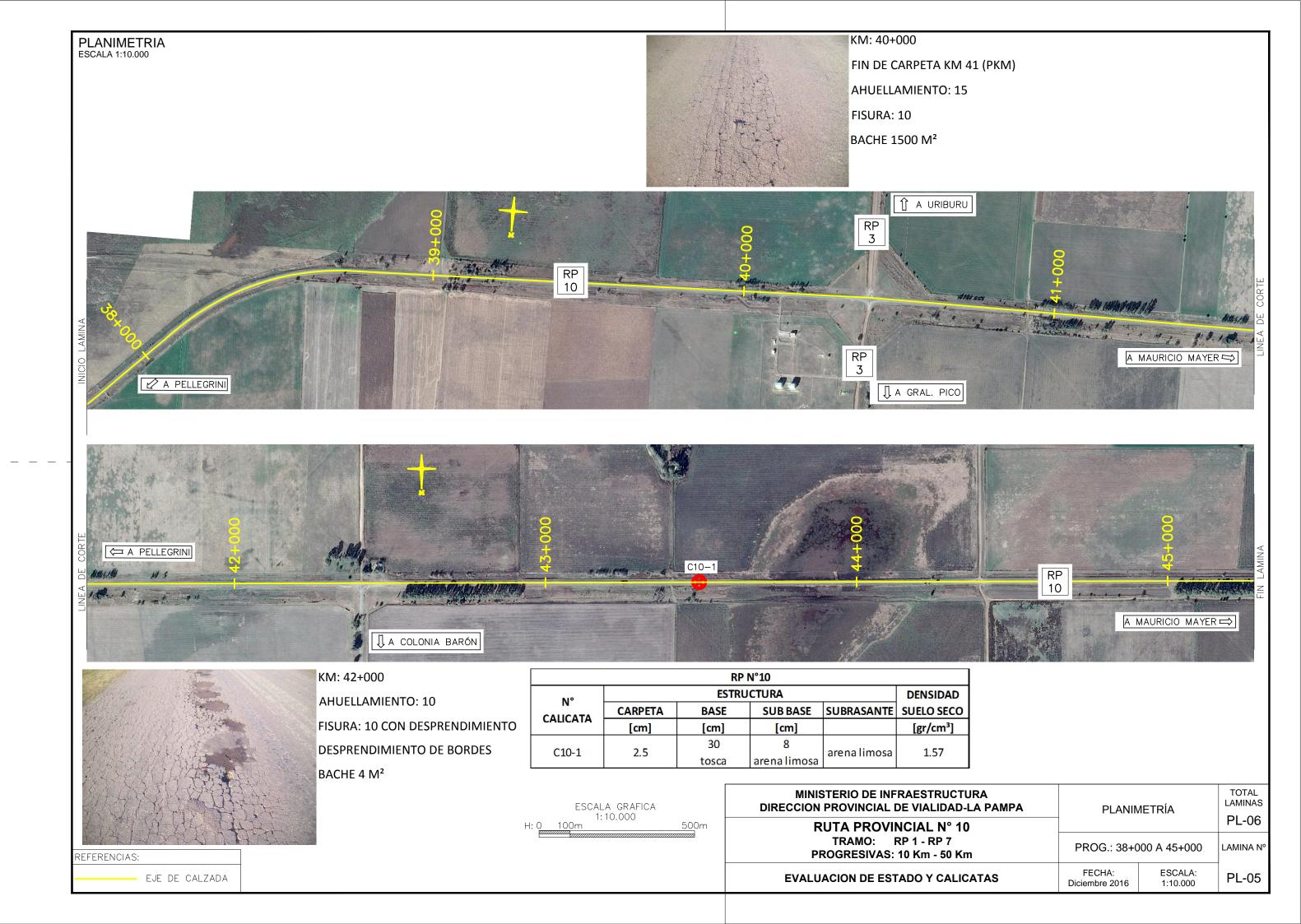
KM: 146+000

FISURA: 10

AHUELLAMIENTO: 15

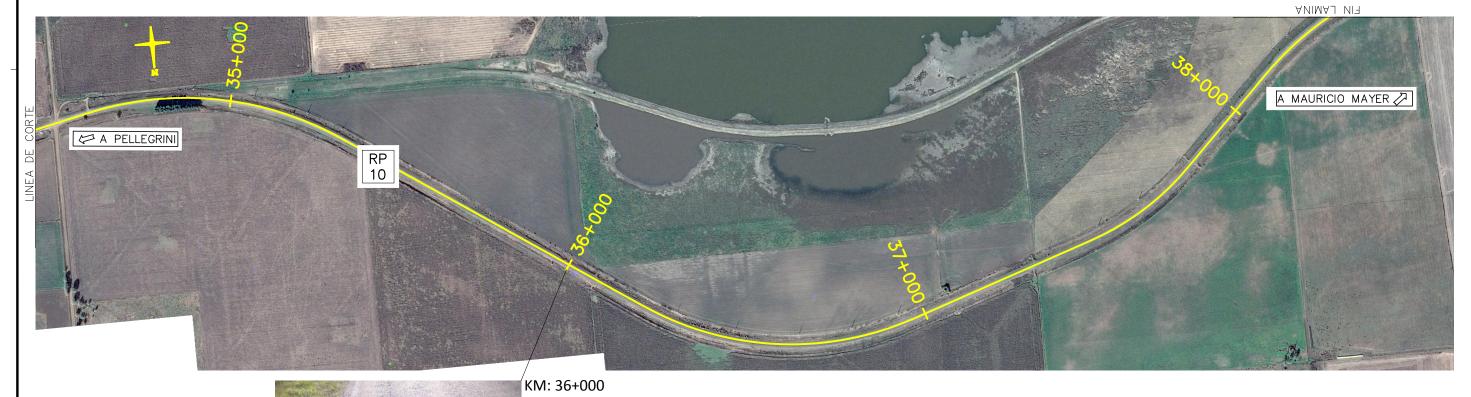

BACHE-BACHEO


MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS
RUTA PROVINCIAL N° 4			PL-09
TRAMO: RN35 - RPN°11 PROGRESIVAS: 92 Km - 154 Km	PROG.: 141+000 A 148+000		LAMINA Nº
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-08


REFERENCIAS:

EJE DE CALZADA

ESCALA GRAFICA 1:10.000 H: 0 100m 500m


REFERENCIAS:

- EJE DE CALZADA

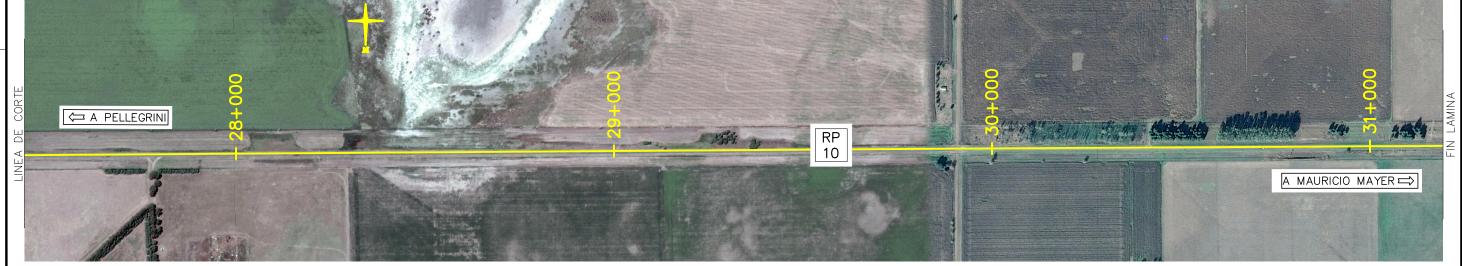
REHABILITACIÓN PROPUESTA					
RP N°10					
	LONG.	ESTRUCTURA			
TRAMO		CARPETA	BASE NUEVA	BASE	
	[Km]	[cm]	[cm]	[cm]	
V == 20 0 E0 2	20.2	3	30	20	
Km 30,0-50,2	20.2	3	tosca	tosca	

RP N°10					
N°	ESTRUCTURA				DENSIDAD
CALICATA	CARPETA		SUB BASE	SUBRASANTE	SUELO SECO
CALICATA	[cm]	[cm]	[cm]		[gr/cm ³]
C10.2	2.5	30	46		
C10-2	3.5	tosca	arena limosa	rocoso	

AHUELLAMIENTO: 10

FISURA: 6

INICIO DE CARPETA NUEVA KM 35
EN ADELANTE


ESCALA GRAFICA
1: 10.000
H: 0 100m 500m

MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIN	PLANIMETRÍA		
RUTA PROVINCIAL N° 10				
TRAMO: RP 1 - RP 7 PROGRESIVAS: 10 Km - 50 Km	PROG.: 31+0	000 A 38+000	LAMINA N°	
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-04	

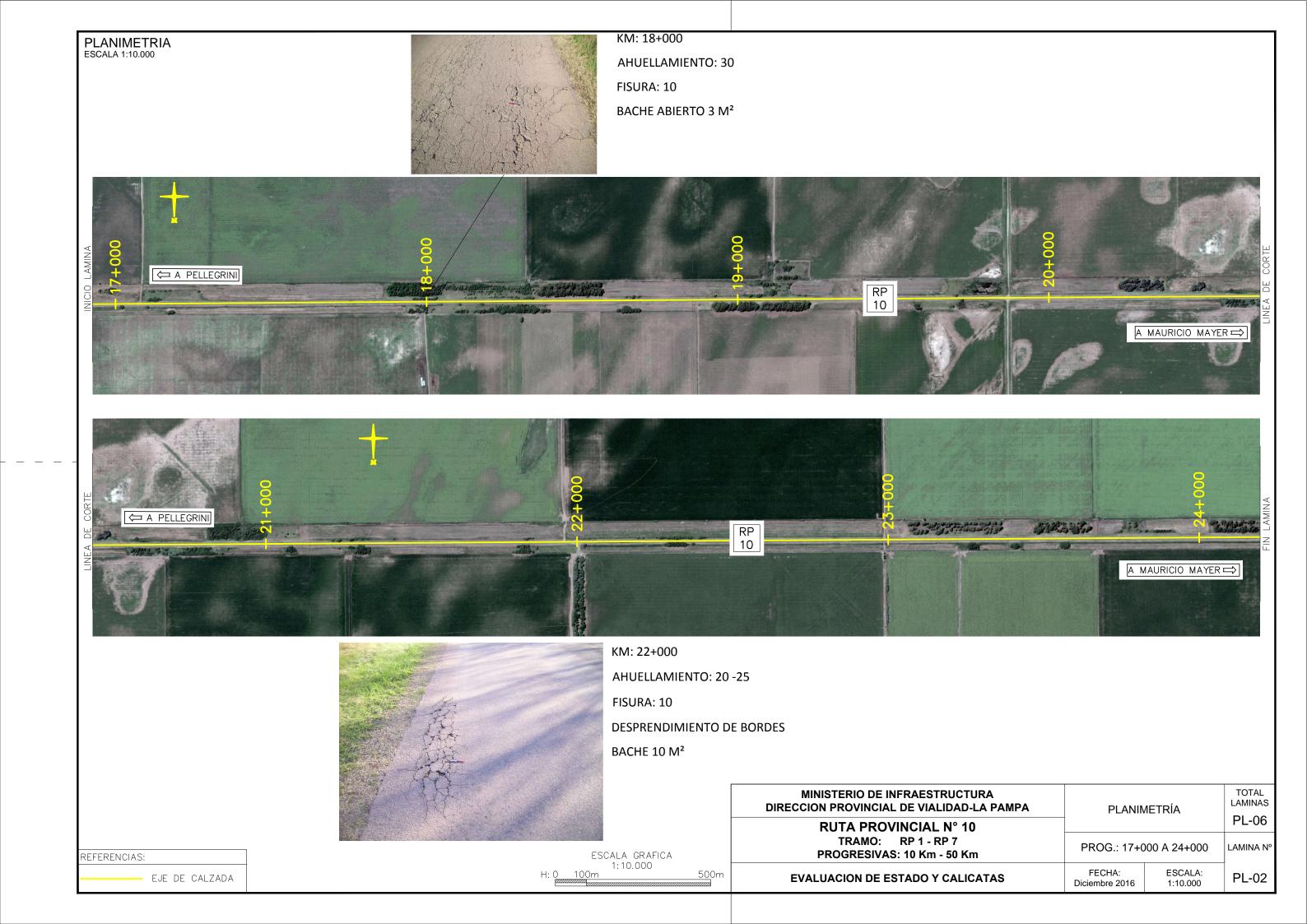
RP N°10						
N° ESTRUCTURA					DENSIDAD	
CALICATA	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO	
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]	
C10.2	4	29	60	arana limasa	1 20	
C10-3	4	tosca	arena limosa	arena limosa	1.38	

ESCALA GRAFICA 1:10.000

REFERENCIAS:

- EJE DE CALZADA

KM: 28+000


AHUELLAMIENTO: 20

FISURA: 10 CON DESPRENDIMIENTO

BACHE 3 M²

DESCALCE DE BORDES

	MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA PLANIMETRÍA		//ETRÍA	TOTAL LAMINAS
	RUTA PROVINCIAL N° 10			PL-06
	TRAMO: RP 1 - RP 7 PROGRESIVAS: 10 Km - 50 Km	PROG.: 24+0	000 A 31+000	LAMINA N°
)m	EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-03

REHABILITACIÓN PROPUESTA					
RP N°10					
	LONG.		ESTRUCTURA		
TRAMO	[Km]	CARPETA	BASE NUEVA	BASE	
	נוווזן	[cm]	[cm]	[cm]	
Vm 10 2 20 0	10.0	5	30	20	
Km 10,2-30,0	19.8	5	tosca	tosca	

KM: 12+000

AHUELLAMIENTO: 20

FISURA: 10

KM: 14+000 AHUELLAMIENTO: 20

FISURA: 10

DESCALCE DE BORDES

ESPRENDIMIENTO RP N°10					
N° ESTRUCTURA				DENSIDAD	
CALICATA CARPETA BASE SUBBASE SUBRASA		SUBRASANTE	SUELO SECO		
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]
C10 4	2	33	40		1.62
C10-4	3	tosca	arena limosa	arena limosa	1.62

MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIN	TOTAL LAMINAS PL-06	
RUTA PROVINCIAL N° 10 TRAMO: RP 1 - RP 7 PROGRESIVAS: 10 Km - 50 Km	PROG.: 10+000 A 17+000		LAMINA Nº
EVALUACION DE ESTADO Y CALICATAS	FECHA:	ESCALA: 1:10.000	PL-01

REFERENCIAS:

- EJE DE CALZADA

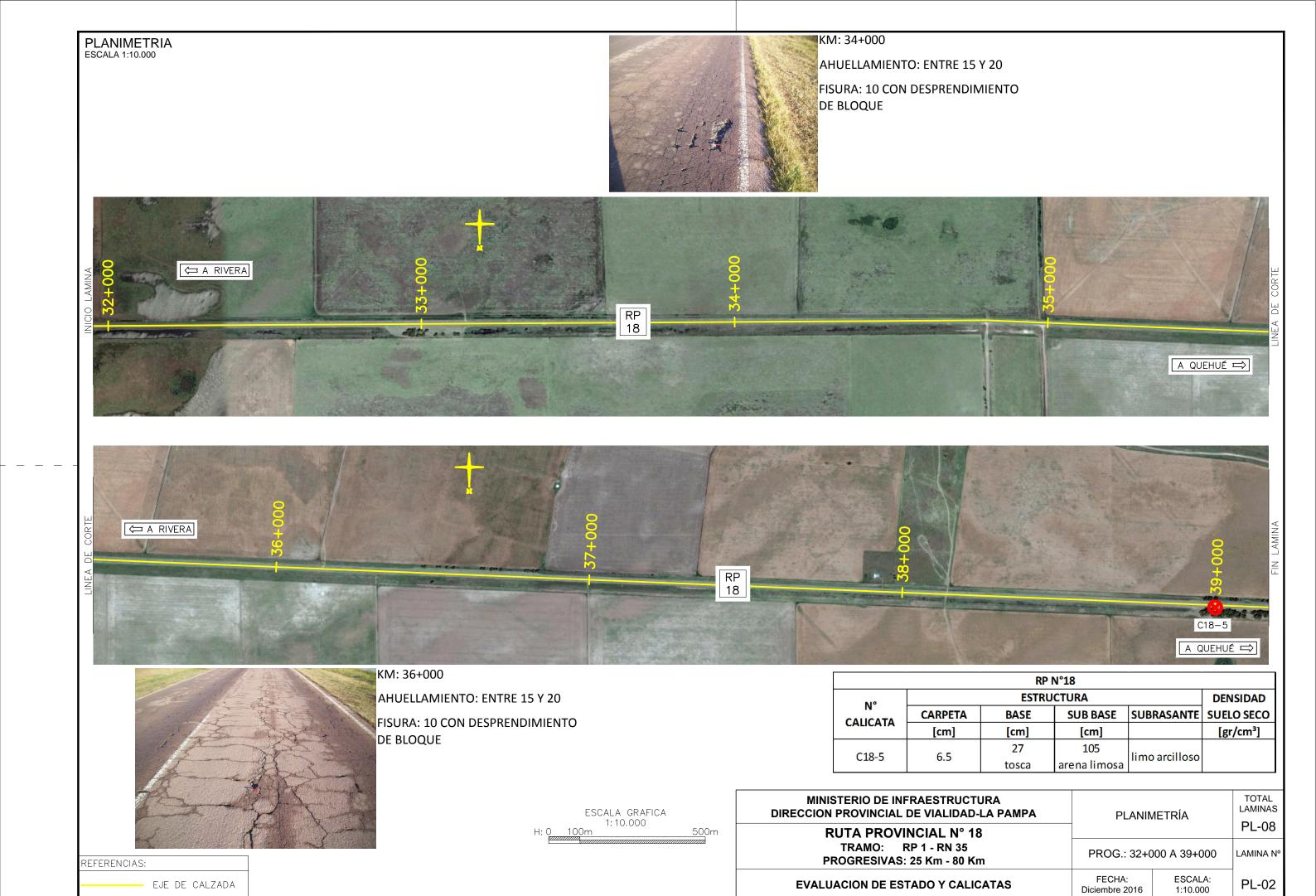
ESCALA GRAFICA
1:10.000
H: 0 100m 500m

KM: 26+000

AHUELLAMIENTO: ENTRE 15 Y 20

FISURA: 10

REHABILITACIÓN PROPUESTA					
RP N°18					
	LONG.	ESTRUCTURA			
TRAMO		CARPETA	BASE NUEVA	BASE	
	[Km]	[cm]	[cm]	[cm]	
Km 25,1-60,0	24.0	6	30	30	
KIII 25, 1-60,0	5,1-60,0 34.9		Tosca	tosca	



RP N°18					
N°		DENSIDAD			
CALICATA CARPETA		BASE	SUB BASE	SUBRASANTE	SUELO SECO
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]
C18-6	10	28 grava angulosa	60 arena limosa	nivel freático	

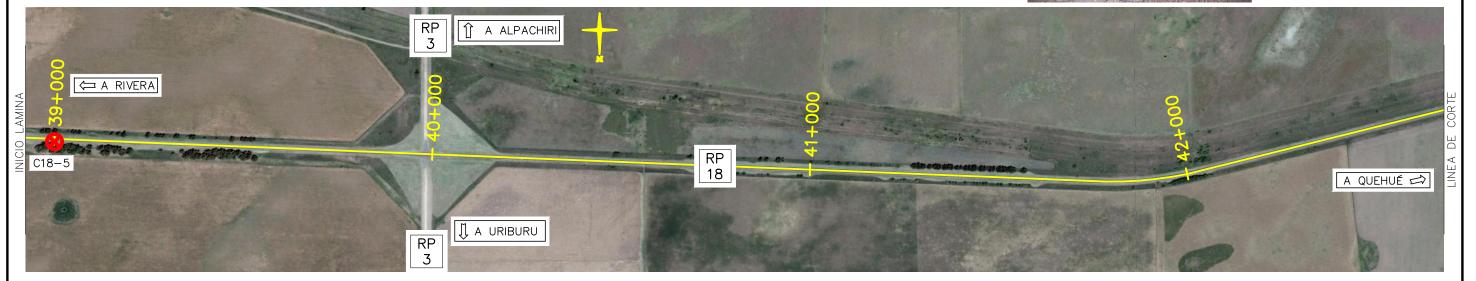
ESCALA GRAFICA 1:10.000 H: 0 100m 500m

MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS
RUTA PROVINCIAL N° 18	PL-(
TRAMO: RP 1 - RN 35 PROGRESIVAS: 25 Km - 80 Km	PROG.: 25+0	000 A 32+000	LAMINA N
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-01

Diciembre 2016

REFERENCIAS:

- EJE DE CALZADA



KM: 42+000

CAMBIO DE SUPERFICIE

AHUELLAMIENTO: 10

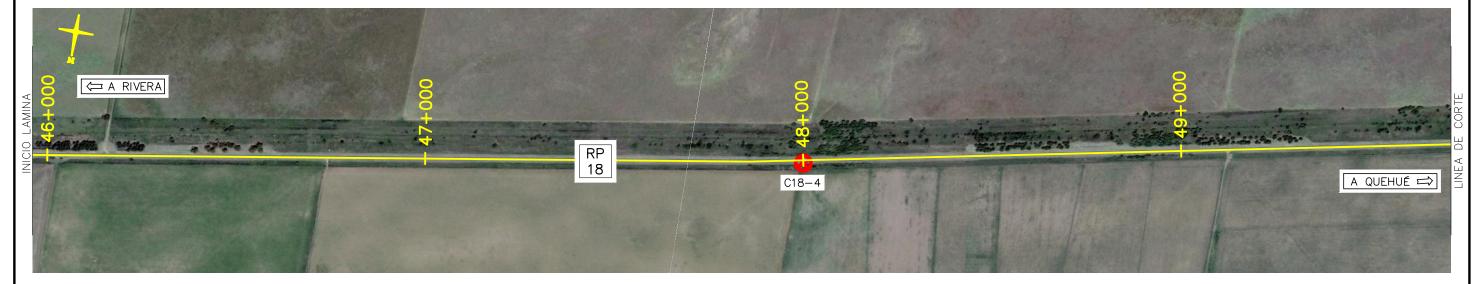
INICIO DE FISURA DE 8- 10

AH FISI FAL 2 B

KM: 44+000

AHUELLAMIENTO: 5

FISURA: NO HAY

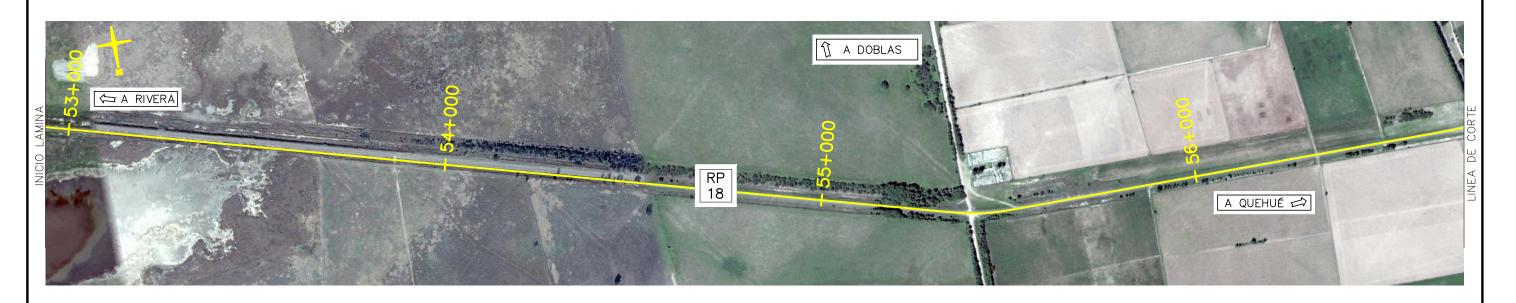

FALTA DEMARCACION HORIZONTAL

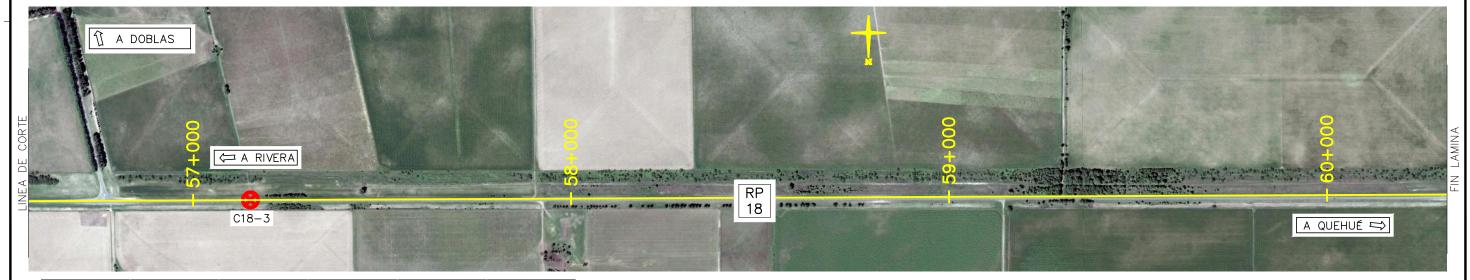
2 BACHES DE 1 M² CADA UNO

	A CONTRACTOR OF THE CONTRACTOR	
	ESCALA GRAF 1:10.000	
H: 0 1	00m	500

EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-03	
TRAMO: RP 1 - RN 35 PROGRESIVAS: 25 Km - 80 Km	PROG.: 39+000 A 46+000		LAMINA Nº	
RUTA PROVINCIAL N° 18			PL-08	
MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		LAMINAS	

RP N°18					
ESTRUCTURA					DENSIDAD
N° CALICATA	CARPETA BASE SUBBASE SUBRASANTE				SUELO SECO
CALICATA	[cm]	[cm]	[cm]		[gr/cm ³]
C10.4	7	35	75	liana anaillana	1 44
C18-4	/	tosca	arena limosa	limo arcilloso	1.44


KM: 50+000 AHUELLAMIENTO: ENTRE 5 Y 10


> ESCALA GRAFICA 1:10.000 H: 0 100m 500m

MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS
RUTA PROVINCIAL N° 18			PL-08
TRAMO: RP 1 - RN 35 PROGRESIVAS: 25 Km - 80 Km	PROG.: 46+000 A 53+000		LAMINA N°
EVALUACION DE ESTADO Y CALICATAS	FECHA:	ESCALA:	PL-04

KM: 54+000
AHUELLAMIENTO: ENTRE 5 Y 10
INICIO DE FISURA TIPO 8

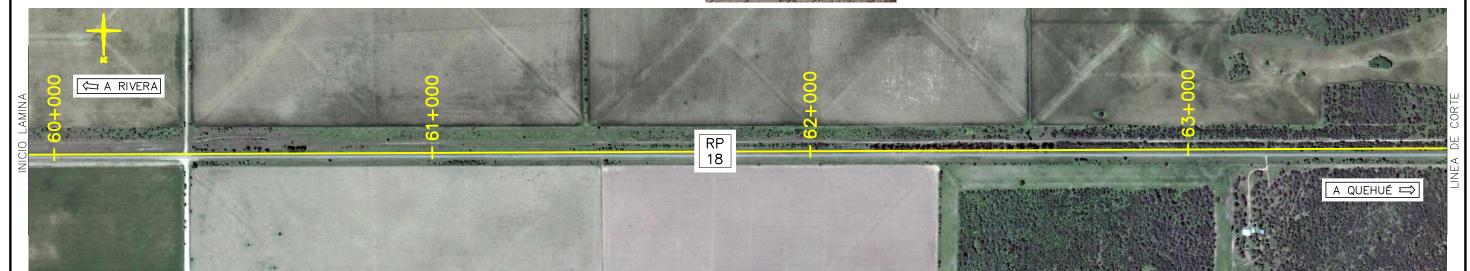
RP N°18					
ESTRUCTURA					DENSIDAD
N° CALICATA	CARPETA BASE SUBBASE SUBRA			SUBRASANTE	SUELO SECO
CALICATA	[cm]	[cm]	[cm]	[cm]	
C10.2		20	55		
C18-3	6	tosca	arena limosa	rocoso	

ESCALA GRAFICA
1:10.000
H: 0 100m 500m

MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIN	PLANIMETRÍA	
RUTA PROVINCIAL N° 18			PL-08
TRAMO: RP 1 - RN 35 PROGRESIVAS: 25 Km - 80 Km	PROG.: 53+000 A 60+000		LAMINA Nº
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-05

REFERENCIAS:

EJE DE CALZADA


REHABILITACIÓN PROPUESTA					
	RP N°18				
ESTRUCTURA					
TRAMO	LONG. [Km]	CARPETA	BASE NUEVA	BASE	
		[cm]	[cm]	[cm]	
Km 60,0-80,7	Km 60.0-80.7 20.7		30	20	
KIII 60,0-80,7	20.7	9	tosca	tosca	

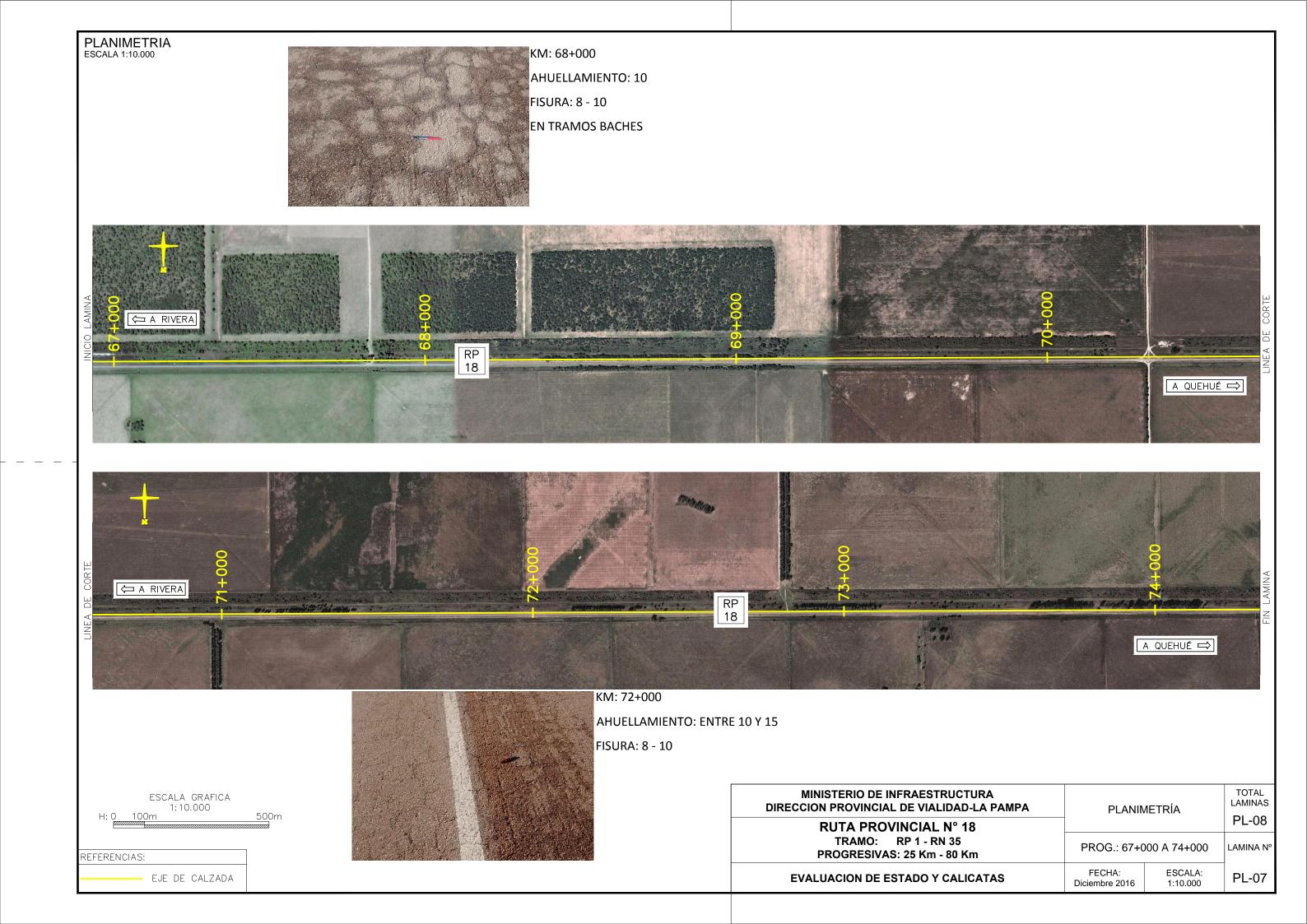
KM: 62+000

AHUELLAMIENTO: 15

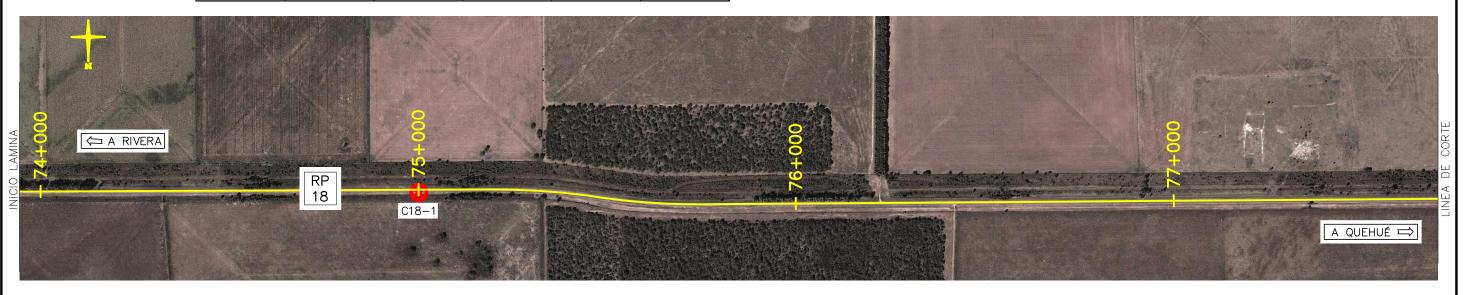
FISURA: 8 - 10

ESCALA GRAFICA 1:10.000

REFERENCIAS:


- EJE DE CALZADA

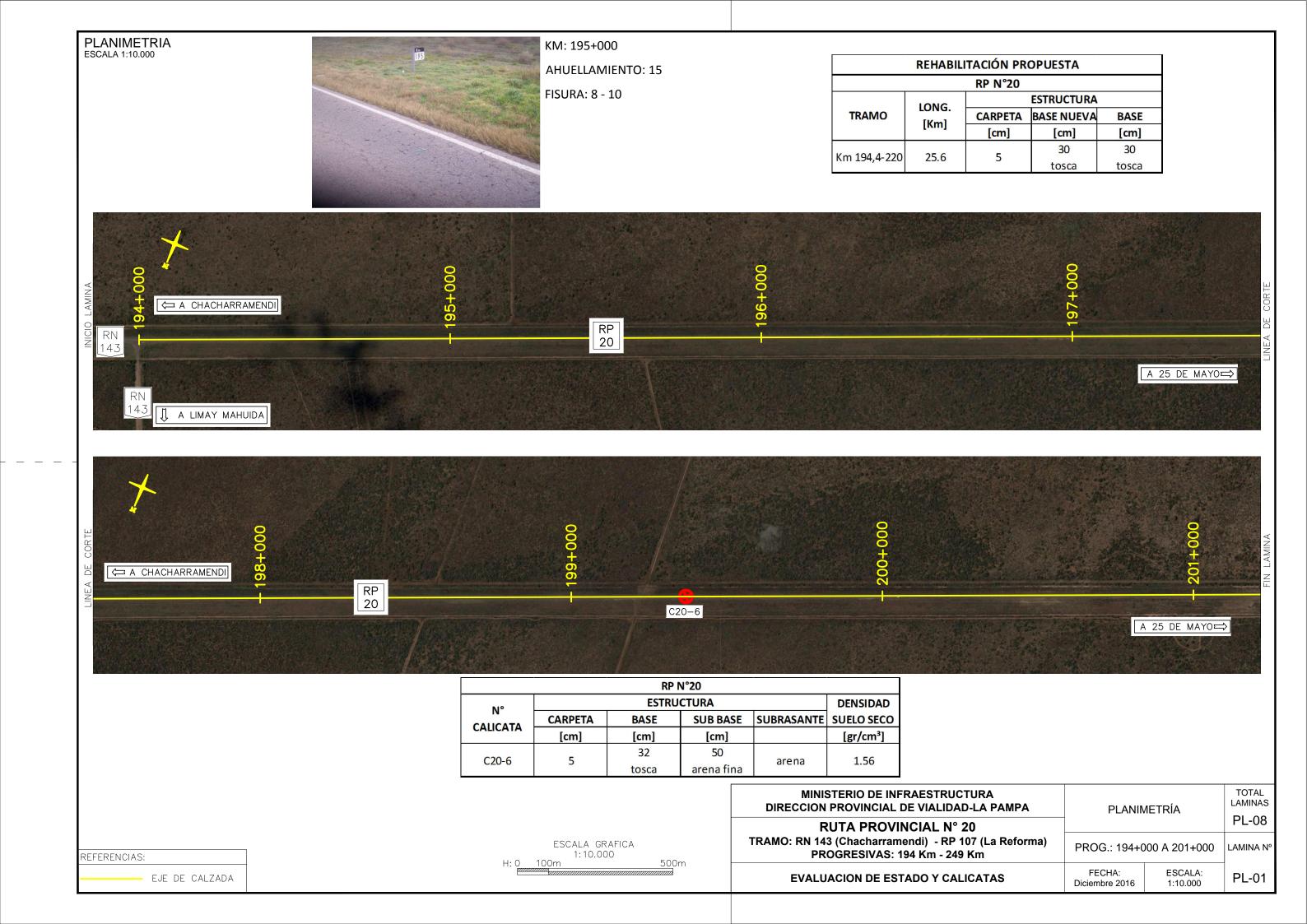
KM: 64+000 AHUELLAMIENTO: 15

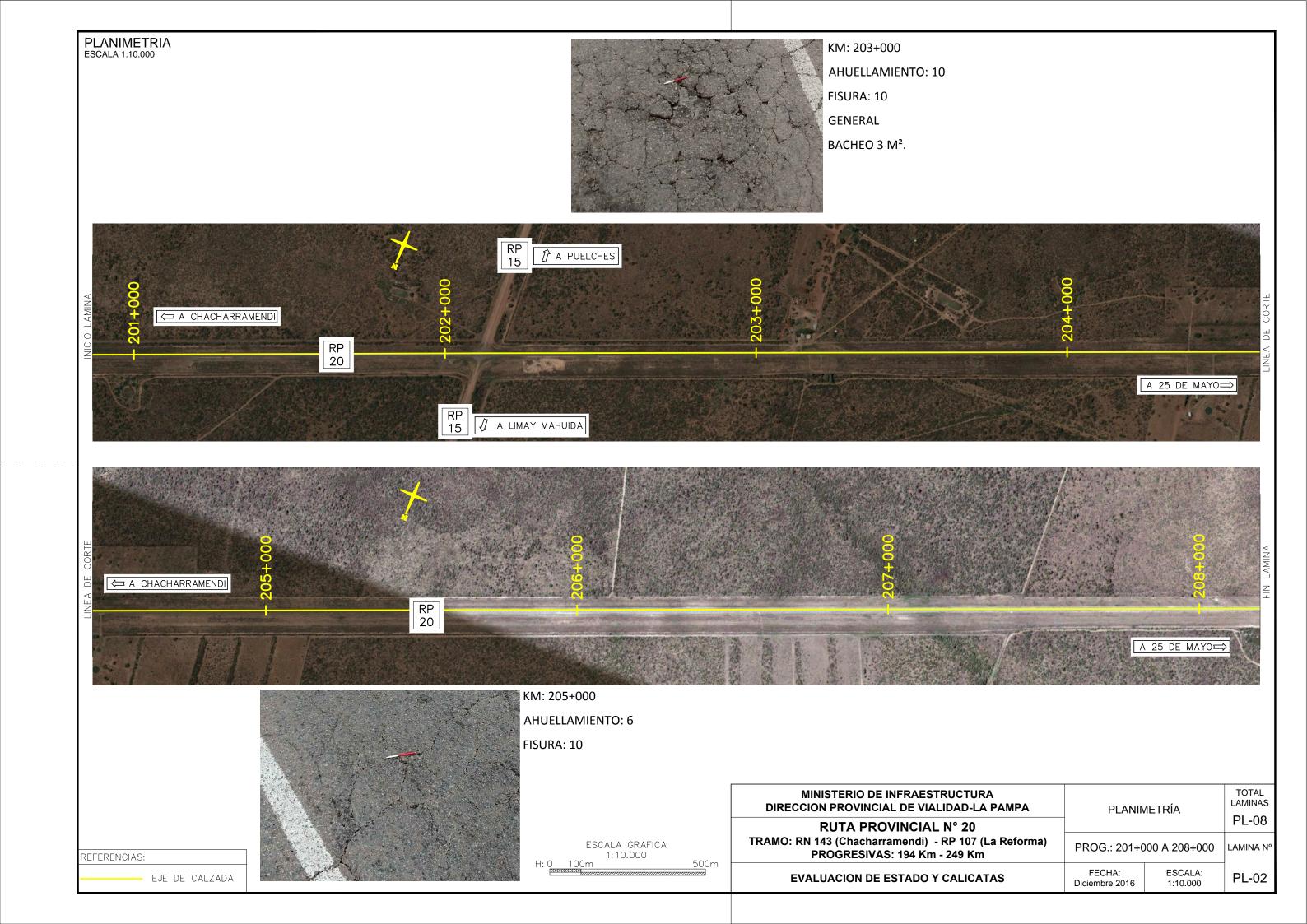

FISURA: 8 - 10

RP N°18						
N° ESTRUCTURA					DENSIDAD	
CALICATA	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO	
CALICATA	[cm]	[cm]	[cm]		[gr/cm ³]	
C10.2	4	29	39		1 42	
C18-2	4	tosca	limo	arena limosa	1.42	


MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS
RUTA PROVINCIAL N° 18			PL-08
TRAMO: RP 1 - RN 35 PROGRESIVAS: 25 Km - 80 Km	PROG.: 60+000 A 67+000		LAMINA Nº
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-06

RP N°18						
ESTRUCTURA					DENSIDAD	
CALICATA	N° CARPETA BASE SUBBASE SUBRASANTE				SUELO SECO	
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]	
C10 1	2.5	29	70		1.40	
C18-1	3.5	tosca	arena limosa	arena limosa	1.49	




AHUELLAMIENTO: ENTRE 10 Y 15

FISURA: 8 - 10 BACHEO 10 M²

ESCALA GRAFICA 1:10.000 H: 0 100m	500m
REFERENCIAS:	
EJE DE CALZADA	

MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS PL-08
RUTA PROVINCIAL N° 18			
TRAMO: RP 1 - RN 35		PROG.:74+000 A 80+364	
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-08

RP N°20					
N°	DENSIDAD				
CALICATA	CARPETA	SUELO SECO			
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]
C20 F	_	33	12		1 57
C20-5	5	tosca	arena limosa	arena	1.57

AHUELLAMIENTO: 5MM

FISURA: 8 - 10

BACHE

DESPRENDIMIENTO DE BLOQUE

ESCALA GRAFICA 1:10.000

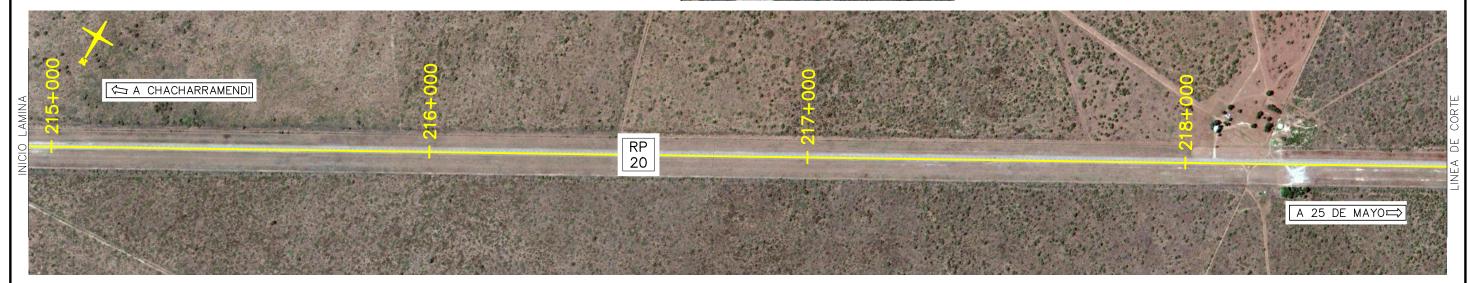
RP N°20						
N°	ESTRUCTURA				DENSIDAD	
CALICATA	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO	
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]	
C20_4	4.5	39	40		1 [7	
C20-4	4.5 to	tosca	arena limosa	arena limosa	1.57	

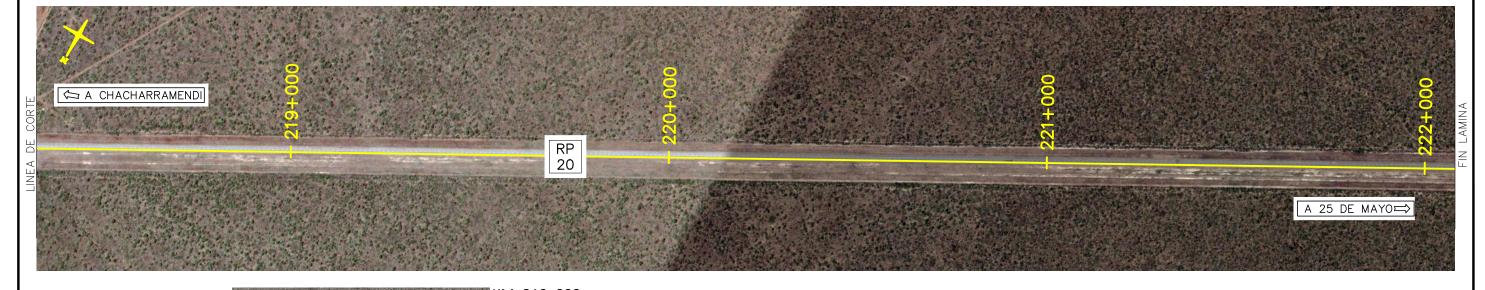
MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS
RUTA PROVINCIAL N° 20			PL-08
TRAMO: RN 143 (Chacharramendi) - RP 107 (La Reforma) PROGRESIVAS: 194 Km - 249 Km	PROG.: 208+000 A 215+000		LAMINA Nº
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-03

REFERENCIAS:

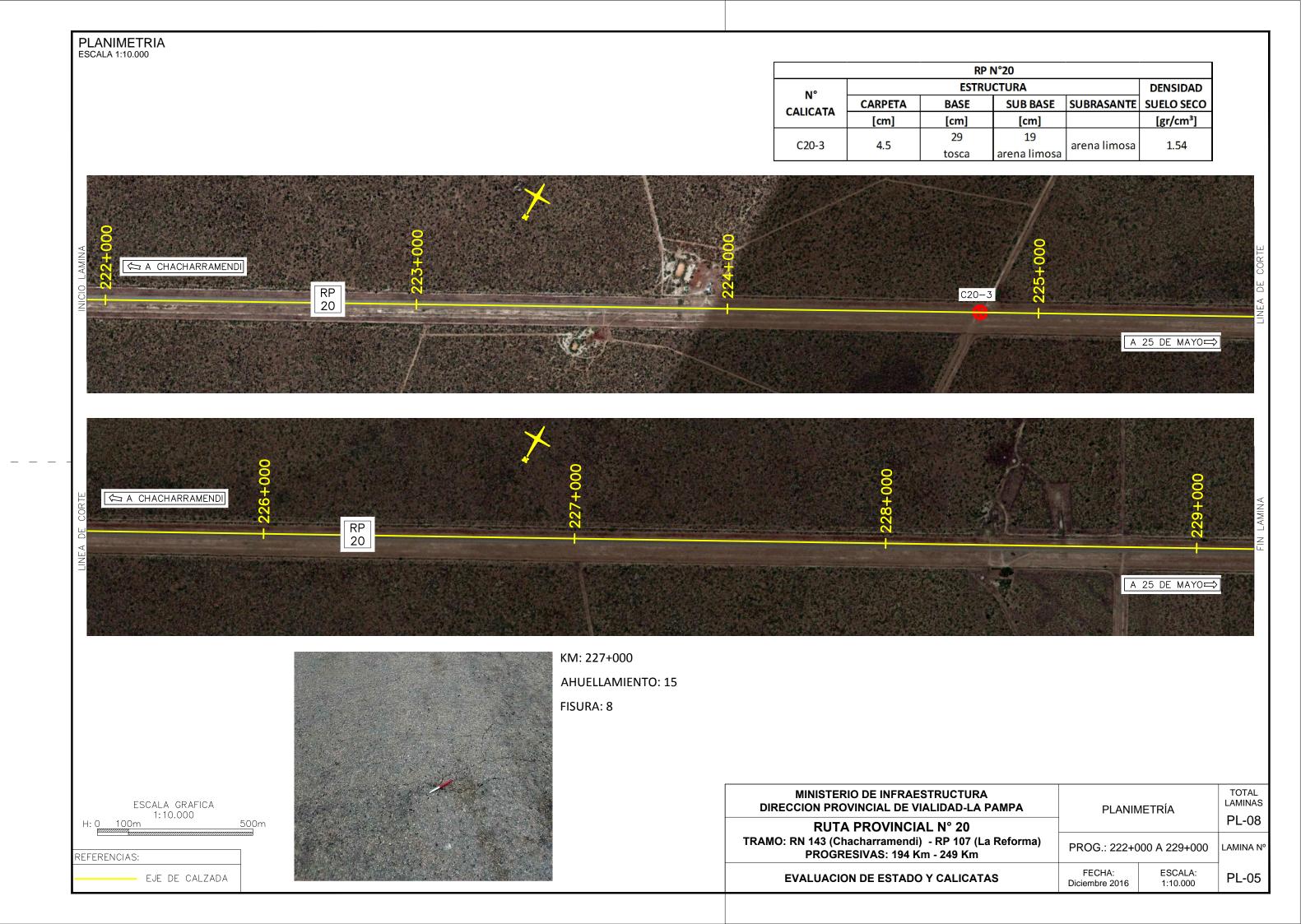
- EJE DE CALZADA

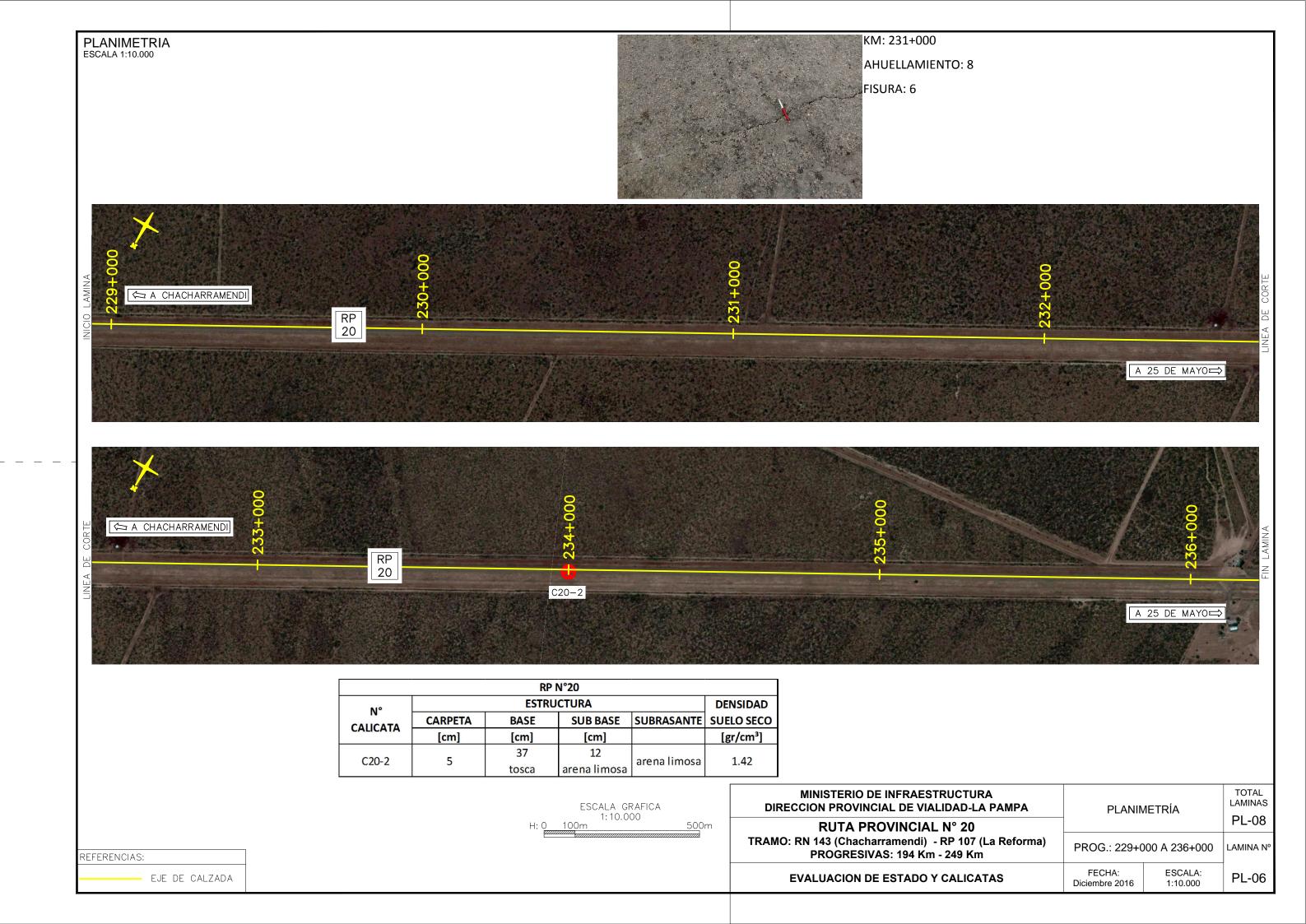
REFERENCIAS:

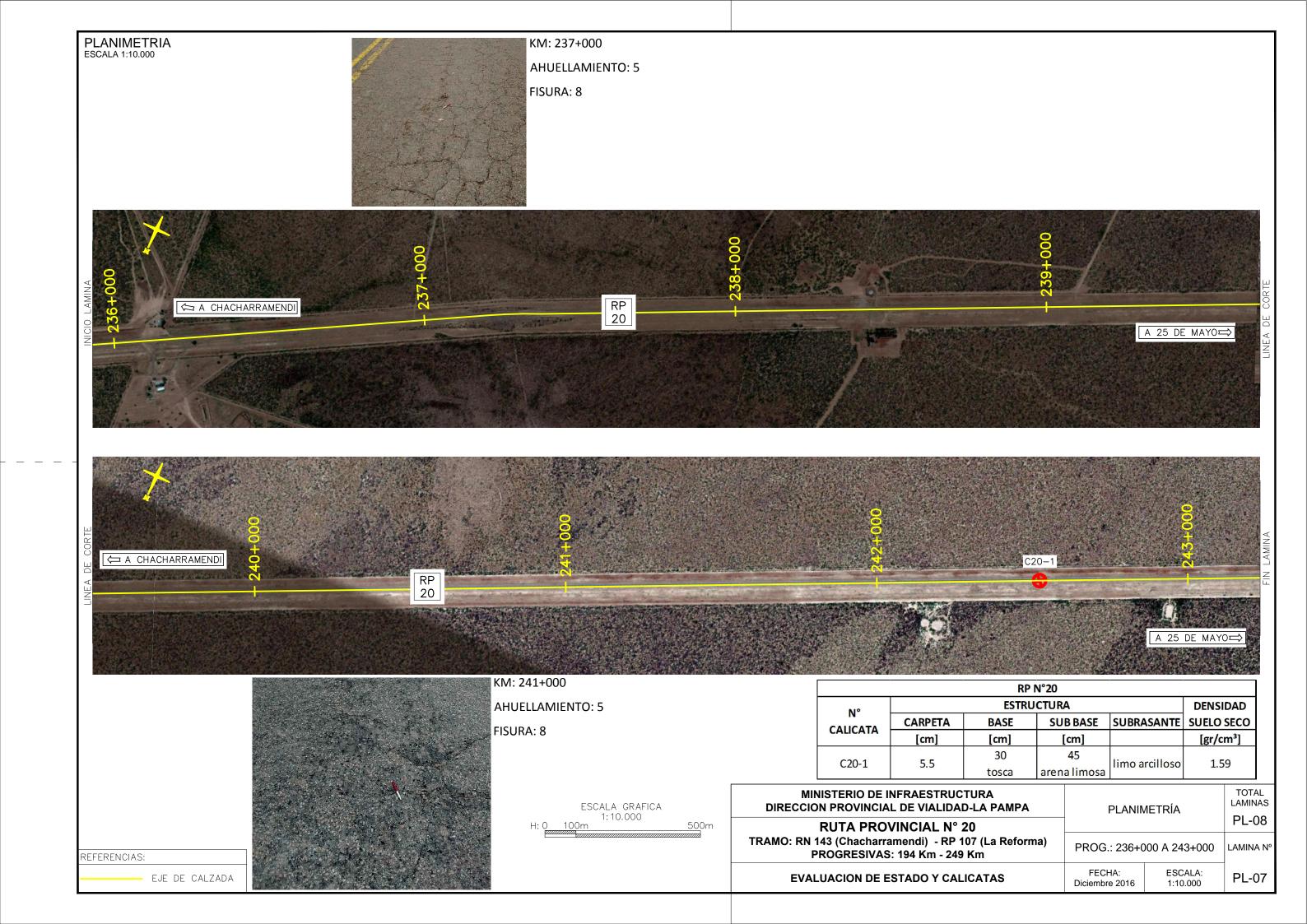

- EJE DE CALZADA

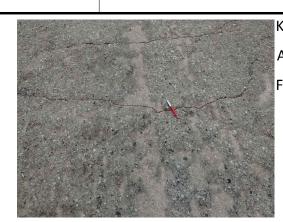

REHABILITACIÓN PROPUESTA						
RP N°20						
TRAMO	LONG.	ESTRUCTURA				
	[Km]	CARPETA	BASE NUEVA	BASE		
		[cm]	[cm]	[cm]		
Vm 220 240 E	20.5	5	25	32		
Km 220-249,5	29.5)	tosca	tosca		

KM: 217+000 AHUELLAMIENTO: 5


FISURA: 8 - 10







MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS PL-08
RUTA PROVINCIAL N° 20			
TRAMO: RN 143 (Chacharramendi) - RP 107 (La Reforma) PROGRESIVAS: 194 Km - 249 Km	PROG.: 215+000 A 222+000		LAMINA N°
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-04

KM: 245+000 AHUELLAMIENTO: 5 - 6 FISURA: 6 - 8

KM: 247+000

AHUELLAMIENTO: 10

FISURA: 6

ESCALA GRAFICA
1: 10.000

H: 0 100m 500

MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS
RUTA PROVINCIAL N° 20			PL-08
TRAMO: RN 143 (Chacharramendi) - RP 107 (La Reforma) PROGRESIVAS: 194 Km - 249 Km	PROG.: 243+0	000 A 249+515	LAMINA N°
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-08

RP N°24						
N°		DENSIDAD				
CALICATA	CARPETA	BASE	SUB BASE	SUBRASANTE	SUELO SECO	
CALICATA	[cm]	[cm]	[cm]		[gr/cm³]	
C24.2		30	56	1:	1.52	
C24-2	5,5	tosca	limo	limo arenoso	1,52	

REFERENCIAS:

- EJE DE CALZADA

KM: 4+000 FISURA: 8

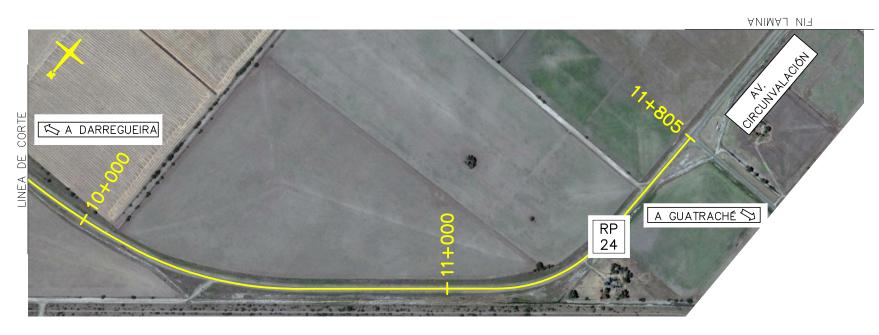
AHUELLAMIENTO: 5-10

BACHE 1.5M²

	ESCALA G	RAFICA
	1:10.0	000
H: 0	100m	500m

	REHABILITACION PROPUESTA					
	RP N°24					
	LONG.	ESTRUCTURA				
TRAMO	[Km]	CARPETA	BASE NUEVA	BASE		
		[cm]	[cm]	[cm]		
Meridiano V	11.8	5	30	30		
Guatrache	11.0	5	tosca	tosca		

MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS PL-02
RUTA PROVINCIAL N° 24			
TRAMO: Meridiano V - Guatraché PROGRESIVAS: 0 Km - 12 Km	PROG.: 0+000 A 7+000		LAMINA Nº
EVALUACION DE ESTADO Y CALICATAS	FECHA: Diciembre 2016	ESCALA: 1:10.000	PL-01



KM: 8+000 FISURA: 8

AHUELLAMIENTO: 5-10

LINEA DE CORTE ← A DARREGUEIRA A GUATRACHÉ 🕢 RP 24 C24-1

KM: 11+805 FISURA: 8

AHUELLAMIENTO: 5-10

FISURA: 8

AHUELLAMIENTO: 5-10

	ESCA	LA GRAFICA	
	1	:10.000	
H: 0	100m		500m

MINISTERIO DE INFRAESTRUCTURA DIRECCION PROVINCIAL DE VIALIDAD-LA PAMPA	PLANIMETRÍA		TOTAL LAMINAS
RUTA PROVINCIAL N° 24	_		PL-02
TRAMO: Meridiano V - Guatraché PROGRESIVAS: 0 Km - 12 Km	PROG.: 7+000 A 11+805		LAMINA N°
EVALUACION DE ESTADO Y CALICATAS	FECHA:	ESCALA: 1:10.000	PL-02

REFERENCIAS: - EJE DE CALZADA